

Microfluidique et procédés plasmas pour la synthèse chimique

S. Ognier¹, <u>M. Zhang¹</u>, S. Cavadias¹, M. Tatoulian¹

Collaborations :

Prof. Xavier Duten – LSPM- Univ. Sorbonne Paris Nord (Plasma physics) C. Ollivier, L. Fensterbank - IPCM-Sorbonne U - (Organic chemistry)

UNIVERSITÉ PARIS

Our group is specialised in plasma technology and chemical engineering

Our group is part of the National excellence laboratory IPGG

Pierre Gilles de Gennes Institute for microfluidics IPGG: 5000 m² dedicated to microfluidic and its applications...

7th floor: « Plasma, Processes, Microsystems » group

Possibility to engineer/fabricate our own continous flow reactors Analytocal tools for in line analysis

Outline

Organic synthesis in gas/liquid plasma micro-reactor

Challenges and opportunities?

Generation of radical species by Dielectric Barrier Discharge

Starting from simple *gases*, it is possible to generate a wide variety of radicals at ambient pressure and temperature by only applying high electric field in the gas

$$O_{2gas} + e^{-} \rightarrow O_{gas}^{\bullet} + O_{gas}^{\bullet} + e^{-}$$

$$H_{2gas} + e^{-} \rightarrow H_{gas}^{\cdot} + H_{gas}^{\cdot} + e^{-}$$

$$Cl_{2gas} + e^{-} \rightarrow Cl_{gas} + Cl_{gas} + e^{-}$$

$$HCF_{3gas} + e^{-} \rightarrow CF_{3} \cdot_{gas} + H \cdot_{gas} + e^{-}$$

$$H_2O_{gas} + e^- \rightarrow H^{\bullet}_{gas} + HO^{\bullet}_{gas} + e^-$$

$$NH_{3gas} + e^{-} \rightarrow NH_{2} \cdot_{gas} + H \cdot_{gas}$$

 $C_2H_{6gas} + e^- \rightarrow CH_{3gas} + CH_{3gas} + e^-$ Lifetime of gaseous radicals: ~ ms

Going small for the better use of short-lived radicals

Toward gas/liquid plasma reactor for chemical synthesis

Objective: to functionnalize organic molecules using plasmagenerated gaseous radicals

Temps de diffusion

r ²	t _{diffusion} (seconds)	L (mm)
$t_{diffusion} = \frac{L}{D}$	10	10
	0.1	1
D: molar diffusion	0.001	0.1
Coeπicient (m².s-')	10 ⁻⁵	0.01

The width L of the plasma zone should not be too large so that the radical species diffuse rapidly in the liquid phase!

European Patent: « Diphasic gas/liquid plasma reactor » M. TATOULIAN, S. OGNIER, M. ZHANG, 2015. PCT/EP2016/080475. Zhang, M. et al. *Green Processing and Synthesis* 6, nº 1 (2017): 63-72.

A biflow plasma/liquid microreactor

Stable G/L flow along a 1-3 m channel !

A biflow plasma/liquid microreactor

<u>Channel Length</u> ~ 1 m-3 m <u>Liquid residence time</u> ~ 1-2 min

Typical flow rate values:

- Gas: 1 mL/min
- Liquid: 10-50 µL/min

Organic synthesis in gas/liquid plasma micro-reactor

Experimental set-up for organic synthesis in a biflow plasma/liquid microreactor

J. Wengler, S. Ognier, M. Zhang, E. Levernier, C. Guyon, C. Ollivier, L. Fensterbank, et M. Tatoulian, Reaction Chemistry & Engineering, Issue 6, 2018 DOI: 10.1039/C8RE00122G

A biflow plasma/liquid microreactor: Mechanism of Cyclohexane oxidation

Cyclohexanol and cyclohexanone are produced by the recombination of C₆H₁₁OO° radicals in liquid phase

Cylohexanol and cyclohexanone are prevented from overreaction

Perspectives

Perspectives

Functionalization of non volatile complex molecules dissolved in an organic solvent

Example: methylation of cafeine

Challenges associated with the plasma functionalization of molecules in liquid phase

Plasma ignition in gas-liquid microreactors with various organic solvents

Solvant	З	μ (mPa.s)	P _{vsat} 20°C (hPa)	ΔU Ar (kV) (1 kHz)	ΔU CH ₄ (kV) (1 kHz)	ΔU O ₂ (kV) (1 kHz)
Cyclohexane	2	0,89	104	11	13	9
1,4-dioxane	2	1,18	41	5 ?	10	9
THF	1,63	0,46	200	10	11	9
EtOAc	6	0,43	97	10	15	14
Pipéridine	5,9	1,6	3,9	6 ?	-	11
DCM	1,84	0,42	475	16 – 18 ?	25	-
CH ₃ COOH	6,2	15,3	1,12	14	-	?
CHCl ₃	4,8	0,54	210	7	13	-
Acétonitrile (CH ₃ CN)	37,5	0,34	97			
Eau	80	0,89	17,5			-
DMF	37	0,8	3,5			-
DMSO	46,7	2	0,61			-
MeOH	33	0,54	200			-
Acétone	21	0,3	240			-

Challenges associated with the plasma functionalization of molecules in liquid phase

Ion mobility in liquid water influences the electric field?

H⁺ mobility in water : $\sim 10^{-6} \text{ m}^2/\text{V/s}$ For an electric field of 10^7 V/m , the H⁺ drift velocity: 10^2 m/s For a gap of 100 um, it takes : **0.1 ms** for the proton to travel

Use higher frequency of nano-pulsed sources?

Experimental study of mass transfer in the twophase plasma/liquid reactor

Experimental study of mass transfer in the twophase plasma/liquid reactor

EPR measurements

> DMPO, 5,5-dimethylpyrroline N-oxide

EPR signal of the spin adduct

La DMPO est ajoutée dans l'eau avec une concentration de 0,4 mol/L. Il est nécessaire d'avoir une concentration en DMPO élevée afin d'être toujours en excès de DMPO à l'interface gaz/liquide

Experimental study of mass transfer in the two-phase plasma/liquid reactor

Piégeage de 'H et de 'OH en phase liquide

 $[DMPO-OH] \sim [DMPO-H] \sim 10^{-6} \text{ mol/L}$

Le flux interfacial de OH° et H° est faible, aux environs de 10⁻⁵ mol.m⁻².s⁻¹, en raison des réactions de recombinaison très rapides en phase gaz

Challenges associated with the plasma functionnalization of molecules in liquid phase

Conclusion

Plasma/liquid continuous microreactors can be a tool to functionnalize organic compounds in the absence of catalyst

Improving the selectivities of the reactions needs a fine tuning of the operating conditions, what is compatible with microfluidics

The functionalization of low volatile compounds in liquid phase is still a challenge

Acknowledgements

Partnership & Collaborators

Prof. Xavier Duten – LSPM- Univ. Sorbonne Paris Nord

Fundings

SANOFI

Merci

