
Neural networks and reduced models for plasmas

Laurent Navoret

IRMA, Université de Strasbourg and INRIA Nancy-Grand Est, Tonus

Joint work with Léo Bois, Nicolas Crouseilles, Emmanuel Franck,
Guillaume Steimer, Vincent Vigon

GDR Emili, Ecole Polytechnique

Wednesday 27 October 2021

1/33



Context

Plasmas dynamics
• distribution function f(x, v, t) in phase
space (high-dimension)

• multi-scale (mass ratio, quasineutrality,
collisions, anisotropy)

Ý full simulations: time and memory demanding
Ý need for reduced models for real-time simulations for diagnostics or control

Goal

• reduced models based on neural networks
• study of the stability and accuracy once used numerically
• one-dimensional test
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Neural Network

Neural Network: parametrized function

Fθ̂(X)

approximation of a real unknown function F(X) (ex: physical quantity)

Fit data (supervised learning)

θ̂ = argmin
θ∈Θ

∑
i

distance (F(Xi),Fθ(Xi))

data: (Xi,F(Xi))i
Ý optimization algorithm

Difficulty
Ý X: a vector of large dimension (ex: image from simulations)
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Neural Network
Neural Network: parametrized function

Y = Fθ(X) = σ
(
W (d)σ

(
W (d−1)σ

(
· · ·σ

(
W (0)X

))))
• succession of layers
• one layer: linear combination followed by a non-linear activation function

Y (p+1) = σ
(
W (p)Y (p)

)
W (p): weights matrices
σ(a) = max(a, 0)

• parameters: θ = (W (p))p

Example: fully connected
neural network
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Neural Network

A lot of applications in signal analysis
• image classification
• image segmentation
• speech recognition

Ý based on GPU implementation
Ý large of amount of data
Ý user-friendly library (keras)
Ý mathematical properties (separation, symmetries, multi-scale) [Mallat, 2015]

Used for the construction of reduced models in physics: 2 examples
1 Fluid closure

2 Particle reduced model

Ý specific architecture
Ý specific data processing
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Plasma model

Different description
• Kinetic description for collisionless plasma (ε > 1)
distribution function f(x, v, t), with x ∈ [0, L], v ∈ R, t > 0

• Fluid description for collisional plasma (ε < 10−2)
density ρ(x, t), velocity u(x, t), temperature T (x, t)

Ý Knudsen number ε: mean free path between two collisions / L

Ý fluid description are cheaper

Ý extend the range of validity of fluid models to weakly collisional plasma
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Kinetic model
One-dimensionnal Vlasov-Poisson model on [0, L]:

∂tf + v∂xf − E∂vf =
1

ε
(M(f)− f)

E = −∂xφ, −∂xxφ =
1

L

∫ L

0

ρ(t, x) dx− ρ

+ spatial periodic boundary conditions

BGK collision operator

• relaxation to a Maxwellian M(f)(x, v, t) = ρ(x,t)√
2πT (x,t)

e
− (v−u(x,t))2

2T (x,t)

• ρ, u, T : moments of the distribution function f

[density] [pressure]

ρ(x, t) =

∫
R
f(x, v, t)dv p(x, t) =

∫
R
f(x, v, t)(v − u(x, t))

2
dv

[momentum] [temperature]

ρ(x, t)u(x, t) =

∫
R
f(x, v, t)vdv ρ(x, t)T (x, t) = p(x, t)
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From kinetic to fluid

Fluid equations satisfied by the moments (ρ, ρu, w):
∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2 + p) = −Eρ
∂tw + ∂x(wu+ pu+ q) = −Eρu

w = ρu2/2 + p/2: energy

Ý heat flux: q(x, t) =
∫
R

1
2
f(x, v, t)(v − u(x, t))3dv

Ý system not closed

Ý Closure: expression of q as a function of the other moments

q̂ = C(ε, ρ, u, T )

Ý first possibilities
• [Euler closure] f = M(f) +O(ε) ⇒ q̂ = 0

• [Navier-Stokes closure] f = M(f) + εg +O(ε2) ⇒ q̂ = − 3
2
ε p ∂xT
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Closure
Validity model [Torrilhon, 2016]

Extend range of validity of fluid
models

• higher order terms in
Chapman-Enskog

• higher order moments
(Grad 13 model)

• higher order moments based on
entropic closure
(Levermore 14 moment)

Ý ill-posed systems

Add specific kinetic

• Landau damping effect
• Hammett-Perkins closure
[Hammett, Perkins 90, 92]

Ý fitting dispersion relation of the
linearized equation

Ý q as Hilbert transform of the
temperature

q̂k = −in0

√
8

π
i sign(k)T̂k

Ý non-local closure

• Many extensions in the case of
magnetized plasmas
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Neural Network closures

Neural network closures:
• turbulent flows [Zhou et al. 2020]
• higher moments for neutral fluid [Han et al, 2019]
• learning known plasma closures [Ma et al. 2020] [Maulik et al. 2020]

Goal : insert a data driven closures into fluid solvers for ε ∈ [0.01, 1]

Ý Off-line phase: supervised learning from kinetic simulations

Ý On-line phase: compute the closure at each time step of the fluid solver
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Closure

Non-local Neural Network closure

X = (ε, ρ, u, T ) ∈ (RNx)4 −→ q̂ = Cθ̂(ε, ρ, u, T ) ∈ (RNx)4

θ̂ ∈ Θ: set of parameters

Training: solve the optimization problem (gradient method)

θ̂ = argmin
θ∈Θ

1

|D|
∑

(X;q)∈D

1

Nx

Nx∑
i=1

|Cθ(X)i − qi|

D data set
Cθ(X): prediction of the neural network
q: true heat flux

Ý Define the architecture of the network
Ý Generate data
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Architecture
Convolutional neural network

Ý sparse neural networks
Ý very efficient for structured data (image, signals)
Ý each layer: several 1D convolutions with small kernels followed by

activation functions
input: X of shape (N, d)
output: Y of shape (N, d′)

kernel: K of shape (p, d, d′) size p

Yi,k = σ

(
d∑
j=1

p∑
di=1

Xi+di,jKdi,j,k

)
Ý scalar product with the kernel: measure of similarity
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Architecture
One-dimensional V-net architecture [Ronneberger et al., 2015] [Milletari et al., 2016]

• multi-scale analysis (like in wavelet analysis)
• based on up-samplings and dow-samplings

Ý down-sampling: decrease the size of the signals / increase the number of
channels

Ý up-samping: increase the size of the signals / decrease the number of
channels

• shortcut: add the input to output for accelarating the training process

input X

51
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Small shortcut
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Architecture

Choice of the hyperparameters:

Hyper-parameter Value

size of the input window (N) 512
number of levels (`) 5
depth (d) 4
size of the kernels (p) 11
activation function softplus

softplus: σ(x) = ln(1 + exp(x))

Ý 15 layers

Neural network parameters to learn
• O(2`d2pN)

• Here: 161 937 parameters
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Full closure

For learning and flexibility:

1 Resampling to a given resolution N ′x and preprocessing (standardization of
the data)

2 Slicing into overlapping “windows” of size N = 512

3 Neural network

4 Reconstructing

5 Post-processing, smoothing and resampling

NNθ

NNθ

NNθ
ε, ρ, u, T q̂

(Re)+(P) (Sl) (R) (P’)+(Sm)+(Re’)

1

Cθ : X
(Re)+(P)7−→ X(P ) (Sl)7−→ (X

(P )
j )j

(NNθ)7−→ (Ŷ
(P )
j )j

(R)7−→ Ŷ (P ) (P’)+(Sm)+(Re)7−→ Ŷ .
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Data generation

Data generation by kinetic solver: for each simulation

• initialization: f0(x) = M(ρ, u, T ), with ρ, u and T as Fourier series :

α×

(
a0

2
+ 0.5

20∑
n=1

(an cos(nx) + bn sin(nx))

)
, x ∈ [0, 2π].

an, bn: random

• ε ∈ [0.01, 1]: non-uniform distribution
• 20 recording time t1, t2, . . . , t20 ∈ [0.1, 2]

Ý discretization parameters: Nx = 1024, Nv = 141

Ý Finite Volume in space / Finile Element method in velocity [Helluy et al., 2014]

20× 500 = 10 000 different spatial data for training
20× 500 = 10 000 different spatial data for validation
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Data generation

Data generation by kinetic solver: for each simulation

Output normalization
• avoid too small values of the heat flux prediction
• normalisation with the Navier-Stokes heat flux:

qk0norm =


qk0 × θ

qk0NS
, if 0 < qk0NS 6 θ,

qk0 , otherwise,
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Learning results

Examples from the validation set:

Ý For large ε: neural network closure better
than Navier-Stokes one

L2 relative error on the
validation set:

Ý relative error independent of
the Knudsen number ≈ 10−1
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Fluid model with neural network

Fluid solver+Network: q̂ = Cθ(ε, ρ, u, T )
compared with:

• Fluid +Kinetic (q̂ = q)
• Fluid +Navier-Stokes (q̂ = − 3

2
εp ∂xT )

Electric energy

Ý for large ε: good results for Fluid+Network
Ý error on Fluid+Kinetic due to numerical approximations
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Fluid model with neural network

Fluid solver+Network: q̂ = Cθ(ε, ρ, u, T )
compared with:

• Fluid +Kinetic (q̂ = q)
• Fluid +Navier-Stokes (q̂ = − 3

2
εp ∂xT )

L2 error on density, momentum, energy on
200 simulations

Ý cannot expect better than Fluid+Kinetic
Ý relative error ≈ 0.2
Ý Fluid+Network errors vary like the Fluid+Kinetic one
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Stability
Stability
Ý no guarantee of stability
Ý instabilities triggered by irregular
reconstruction of the heat flux due to
slicing

Smoothing of the output

q̃(x) =

∫ 3σ

−3σ

q(x+ t)w(t) dt.

w: Gaussian kernel with standard
deviation σ

Numerical results: proportion of simulations reaching final time

Ý σ = 0.06 leads to stable numerical simulations
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Convergence
Two options for considering refined grids
Ý option 1: use slicing
Ý option 2: use downsampling to the refinement used for learning

Ý keep close to the data used in training set (same resolution)
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Particle In Cell method

Particle In Cell method: N macro-particles (Xj , Vj) ∈ R2

∀j ∈ {1, . . . , N}, dXj
dt

= Vj

dVj
dt

=
q

m
(Eh + Eext)(Xj)

Eh = −∇φh: approximated self-consistent electric field
Eext = −∇φext: external electric field

Ý Hamiltonian dynamics
Ý costly numerical simulations

Ý Goal: describe the dynamics locally around a given trajectory
with K � N reduced “particles”
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Reduction

1. Find out reduced variables:

u = (X,V ) ∈ R2N −→
compression

ū = (X̄, V̄ ) ∈ R2K −→
decompression

u = (X,V ) ∈ R2N

Ý fast compression / decompression

Linear reduction: ū = Au

• Proper orthogonal decomposition (POD)
• Proper symplectic decomposition (PSD) [Tyranowski, Krauss, 2019]
• analytical dynamics on the reduced variables

Ý valid on linear regime
Ý but electric field computed from original variables
Ý back and forth between reduced and original variables

Non-linear reduction: neural networks
Ý Auto-encoder architecture
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Auto-encoder
Neural network Encoder/Decoder
ū = Fθ(u): encoder
u = Gθ(ū): decoder

Learning:

θ̂ = argmin
Nd∑
i=1

||ui − Gθ(Fθ(ui))||2

Ý (ui): extracted from numerical simulations at different times
Ý Gθ ◦ Fθ ≈ Id on the data

Architecture:
Ý pooling/unpooling
Ý light architecture to reduce the
number of parameters
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Numeratical results

Test-case: one numerical simulation with N = 1000 particles

PSD reduction K = 20

Ý error ≈ 10−2

Auto-encoder reduction K = 7

Ý error ≈ 10−4
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Learning the reduced dynamics
2. Determine the dynamics of the reduced variables:

∀j ∈ {1, . . . ,K}, dX̄k
dt

= ∇VkH̄θ(X̄, V̄ )

dV̄k
dt

= −∇XkH̄θ(X̄, V̄ )

Neural network Hamiltonian function: Hθ(X̄, V̄ )
Ý assumption: separable Hamiltonian
Ý take implicitly into account the electric force
Ý ensure large time stability of the reduced dynamics

Learning

θ̂ = argmin
θ∈Θ

Nd∑
i=1

∥∥∥∥ X̄+∆t
i − X̄i

∆t
−∇V̄ H̄θ(X̄i, V̄i)

∥∥∥∥+

∥∥∥∥ V̄ +∆t
i − V̄i

∆t
+∇X̄H̄θ(X̄i, V̄i)

∥∥∥∥
data: numerical simulations at different times (X̄, V̄ , X̄+∆t, V̄ +∆t)i

Architecture fully connected
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Numerical results

Initial condition:

f(x, v, t) = 1[−0.5,0.5](x) exp(−v2/2)

Numerical method:
1 compression

2 simulation of the reduced model

3 decompression

Phase portrait

Reference (PIC) PSD reduction (K=35) Neural Network reduction (K=8)
30/33



Numerical results

Initial condition:

f(x, v, t) = 1[−0.5,0.5](x) exp(−v2/2)

Numerical method:
1 compression

2 simulation of the reduced model

3 decompression

Ý Hamiltonian reduced dynamics: better control of the numerical error
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Numerical results

Initial conditions:

f(x, v, t) = C xα(1− x)3/2 exp(−v2/2)

Goal: learn the dynamics for α ∈ [2.2, 3.6]

Data: dynamics of N = 104 particles with α ∈ {2.2, 2.6, 3, 3.4, 3.6}

Error for the whole strategy

Ý reduced method: 25 times faster
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Conclusion

Construction of reduced models

• Fluid closure based on a V-net architecture supervised learning
• Particle reduced dynamics based on auto-encoder architecture
semi-supervised learning

• stability properties observed/ensured

Perpectives:
• Extension to dimension 2 or 3
• Add a magnetic field
• Use in real applications

Ongoing ANR project with Max-Planck Institut für Plasma Physics (Garching).
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