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Context

Plasmas dynamics
e distribution function f(z,v,t) in phase
space (high-dimension)
e multi-scale (mass ratio, quasineutrality,
collisions, anisotropy)

— full simulations: time and memory demanding
— need for reduced models for real-time simulations for diagnostics or control

Goal

e reduced models based on neural networks
e study of the stability and accuracy once used numerically

e one-dimensional test
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Neural Network

Neural Network: parametrized function

F5(X)

approximation of a real unknown function F(X) (ex: physical quantity)

Fit data (supervised learning)

6 = argmin Zdistance (F(X3), Fo(Xy))
beco

data: (Xl, -F(Xl))l

— optimization algorithm

Difficulty
— X a vector of large dimension (ex: image from simulations)



Neural Network
Neural Network: parametrized function

Y = Fo(X) = o (Wo (W5 (0 (WOX))))

e succession of layers
e one layer: linear combination followed by a non-linear activation function

ye+th) _ o (W(:D)Y(P)>

W®): weights matrices
o(a) = max(a,0)
e parameters: 6 = (W),

Input Layer 1 Layer 2 Layer 3 Output

Example: fully connected
neural network
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Neural Network

A lot of applications in signal analysis
e image classification
e image segmentation
e speech recognition

— based on GPU implementation

— large of amount of data

— user-friendly library (keras)

— mathematical properties (separation, symmetries, multi-scale) [Mallat, 2015]

Used for the construction of reduced models in physics: 2 examples
©® Fluid closure
@ Particle reduced model

— specific architecture
— specific data processing
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Plan

@® Fluid closure
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Plasma model

Different description
e Kinetic description for collisionless plasma (¢ > 1)
distribution function f(z,v,t), withz € [0,L], vER, >0

e Fluid description for collisional plasma (¢ < 10™?%)
density p(z,t), velocity u(z,t), temperature T'(z,t)

— Knudsen number e: mean free path between two collisions / L
— fluid description are cheaper

— extend the range of validity of fluid models to weakly collisional plasma



Kinetic model

One-dimensionnal Vlasov-Poisson model on [0, L]:

O + vouf — BOf = () - 1)

1 L
E=—-0:¢, —0z20= f/ p(t,l’) dxr —p
0

+ spatial periodic boundary conditions

BGK collision operator

e relaxation to a Maxwellian M (f)(z,v,t) = \/% e_%
e p, u, T: moments of the distribution function f
[density] [pressure]
p(a:,t):/f(z,'u,t)d'u p(z,t):/f(w,v,t)(vfu(w,t))zdv
[momentummi [temperatui]

plz, t)u(z, t) = /R f(z, v, t)vdv p(x, )T (z,t) = p(x,t)
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From kinetic to fluid

Fluid equations satisfied by the moments (p, pu, w):

Owp + 0z(pu) =0
O (pu) + 0 (pu® + p) = —Ep
Orw + Oy (wu + pu+q) = —Epu
w = pu?/2 —|—p/2: energy
— heat flux: = [z 3/ (2,0, 0)(v —u(w,t))’dv
— system not closed

— Closure: expression of ¢ as a function of the other moments

q:C(E7p7u7T)

— first possibilities
[Euler closure] f=M(f)+O(e)
[Navier-Stokes closure] f = M(f) + eg + O(£?)

=0
q= —%EpazT

2

=
=
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Validity model [Torrilhon, 2016]

Closure

Euler NSF Transition Kinetic Free
equations equations regime regime flight
—_—

1073 1072 107

<—EQUILIBRIUM—> | <«—NONEQUILIBRIUM—>

Extend range of validity of fluid
models
e higher order terms in
Chapman-Enskog
e higher order moments
(Grad 13 model)

e higher order moments based on
entropic closure
(Levermore 14 moment)

— ill-posed systems

10° 10’ 102

Kn

Add specific kinetic

e Landau damping effect

o Hammett-Perkins closure
[Hammett, Perkins 90, 92]

— fitting dispersion relation of the
linearized equation
» q as Hilbert transform of the
temperature

8 ~
G, = —inoy/ —1i sign(k)T},
™

— non-local closure

e Many extensions in the case of
magnetized plasmas
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Neural Network closures

Neural network closures:
e turbulent flows [Zhou et al. 2020]
e higher moments for neutral fluid [Han et al, 2019]
e learning known plasma closures [Ma et al. 2020] [Maulik et al. 2020]

Goal : insert a data driven closures into fluid solvers for ¢ € [0.01, 1]
— Off-line phase: supervised learning from kinetic simulations

— On-line phase: compute the closure at each time step of the fluid solver
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Non-local Neural Network closure

6 € ©: set of parameters

Training: solve the optimization problem (gradient method)

N,
s .1 1 3
0 = argmin W E A E |Co(X)i — g

oee (Xiq)eD " i=1

D data set
Co(X): prediction of the neural network
q: true heat flux

— Define the architecture of the network
— Generate data

Closure

(RN
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Architecture
Convolutional neural network
— sparse neural networks
— very efficient for structured data (image, signals)
— each layer: several 1D convolutions with small kernels followed by
activation functions
input: X of shape (N, d)
output: Y of shape (N, d")
kernel: K of shape (p,d,d’) size p

d p
Yir=0 E E KXitdi,j Kaijk
j=1di=1
— scalar product with the kernel: measure of similarity

Input Kernel Output
d




Architecture

One-dimensional V-net architecture [Ronneberger et al., 2015] [Milletari et al., 2016]
e multi-scale analysis (like in wavelet analysis)

e based on up-samplings and dow-samplings
— down-sampling: decrease the size of the signals / increase the number of

channels
— up-samping: increase the size of the signals / decrease the number of

channels
e shortcut: add the input to output for accelarating the training process

L3>

output ¥

€ Convolution Y Down-sampling oF  Summation o) > Small shortcut
A Up-sampling #®  Weighted mean — Big shortcut

> Softplus
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Architecture

Choice of the hyperparameters:

Hyper-parameter Value
size of the input window (V) 512
number of levels (£) 5
depth (d) 4
size of the kernels (p) 11
activation function softplus

softplus: o(z) = In(1 + exp(z))

— 15 layers

Neural network parameters to learn
e O(2°d*pN)
e Here: 161937 parameters

17/33



Full closure

For learning and flexibility:

® Resampling to a given resolution N, and preprocessing (standardization of
the data)

@® Slicing into overlapping "windows” of size N = 512
©® Neural network
O Reconstructing

@ Post-processing, smoothing and resampling

P -
el NN

_®ae) ||| s, ﬂﬂ]—-—’ [ -5 / Sm>+<Re)H
= PN @

Co: x BT XEN L (x(7), R (97, &y ) CIEEI g

18/33



Data generation

Data generation by kinetic solver: for each simulation

e initialization: fo(z) = M(p,u,T), with p, u and T as Fourier series :

2

20

a X <ao +05 Z(an cos(nz) + by sin(mv))) , x€10,2n].
n=1

an,bn: random

e ¢ € [0.01, 1]: non-uniform distribution
e 20 recording time t1,¢2,...,t20 € [0.1,2]

— discretization parameters: N, = 1024, N, = 141
— Finite Volume in space / Finile Element method in velocity [Helluy et al., 2014]

20 x 500 = 10000 different spatial data for training
20 x 500 = 10000 different spatial data for validation
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Data generation

Data generation by kinetic solver: for each simulation

Output normalization
e avoid too small values of the heat flux prediction
e normalisation with the Navier-Stokes heat flux:

0 .
koXTO, |f0<q1k<;)8<97

ko _ q
qnorm - NS

g, otherwise,
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Learning results

Examples from the validation set:

L? relative error on the
validation set:

0.02

« Navier-Stokes
« Network

5
G
E
~ 107!
~
1072
. Knudsen number ¢
E
— For large ¢: neural network closure better — relative error independent of
than Navier-Stokes one the Knudsen number =~ 107"
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Fluid solver+Network: § = Co(z, p,u,T)

compared with:
e Fluid +Kinetic (§ = q)

e Fluid +Navier-Stokes (§ = —3ep 9. T)

Electric energy

Fluid model with neural network

—— Kinetic
- - = Fluid+Kinetic

- - - Navier-Stokes |

= = = Fluid+Network

log £(t)
|
&

NN
\ VAN
YRy

log ()

— for large e: good results for Fluid+Network
— error on Fluid+Kinetic due to numerical approximations
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Fluid model with neural network

L? error on density, momentum, energy on
200 simulations

0.4 -
—— Fluid+Kinetic

—— Navier-Stokes

Fluid solver+Network: § = Co(z, p,u,T) o3| | — Fluid+Network
compared with: '

e Fluid +Kinetic (§ = q)
e Fluid +Navier-Stokes (§ = —3ep 9. T)

0.2

L? relative error

0.1

! I
0 0.2 0.4 0.6 0.8 1
Knudsen number &

— cannot expect better than Fluid+Kinetic
— relative error =~ 0.2
— Fluid+Network errors vary like the Fluid+Kinetic one
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Stability
Stability
— no guarantee of stability
— instabilities triggered by irregular
reconstruction of the heat flux due to -
slicing -

r=2

Smoothing of the output

30

q(z) =/ q(z + t)w(t) dt.

—30

w: Gaussian kernel with standard
deviation o

Numerical results: proportion of simulations reaching final time

._._/_‘_"'M./_‘_‘_‘_’_‘_'

-

Stability

e

0
0 0.01 0.02 003 0.04 005 0.06 007 0.08 009 0.1
4

— o = 0.06 leads to stable numerical simulations
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Convergence
Two options for considering refined grids
— option 1: use slicing
— option 2: use downsampling to the refinement used for learning

Density at t =1 Mean velocity at t =1
5 —e— Option 1 0.05 ! —e— Option 1
E 0.015 I- —e— Option 2 i 0o —e— Option 2 B
_E 0.04 - B
< 001 4 o0o3f 8
&
A ‘ 0.02 - ‘ ‘ B
512 1024 2048 512 1024 2048
Ny Ny
Temperature at t =1 Heat flux at ¢t = 1
g 0.03 - —e— Option 1 B —e— Option 1
E —e— Option 2 —e— Option 2
o < 0.3 - B
£ 0,02 .
=
& 021 B
9001 F ‘ R ‘ ‘
512 1024 2048 512 1024 2048
N, N

— keep close to the data used in training set (same resolution)
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Plan

© Particle reduced model
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Particle In Cell method

Particle In Cell method: N macro-particles (X;,V;) € R?

dX;
1 1 .. N 7‘7 = :
vje{l,...,N}, il
avi _ q
— = —(F Fext) (X
= L5 1 Be)(X,)
En = —V¢y,: approximated self-consistent electric field
FEext = —Vext: external electric field

— Hamiltonian dynamics
— costly numerical simulations

— Goal: describe the dynamics locally around a given trajectory
with K < N reduced “particles”



Reduction

1. Find out reduced variables:

u=(X,V)eR? — a=(X,V)eR* — u=(X,V)eR?™

compression decompression

— fast compression / decompression

Linear reduction: @ = Au
e Proper orthogonal decomposition (POD)
e Proper symplectic decomposition (PSD) [Tyranowski, Krauss, 2019]
e analytical dynamics on the reduced variables

— valid on linear regime
— but electric field computed from original variables
— back and forth between reduced and original variables

Non-linear reduction: neural networks
— Auto-encoder architecture
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Auto-encoder
Neural network Encoder/Decoder
@ = Fp(u): encoder
u = Go(u): decoder

Learning:

— (u;): extracted from numerical simulations at different times
— Gg o Fy ~ Id on the data

Architecture: Lo
— pooling/unpooling = A
— light architecture to reduce the = R
number of parameters e S

input output
decoder Gy
encoder Fp
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Numeratical results

Test-case: one numerical simulation with N = 1000 particles

PSD reduction K = 20

MSE

— error =~ 10~

—

Auto-encoder reduction K = 7

error ~ 107%
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Learning the reduced dynamics

2. Determine the dynamics of the reduced variables:

dXy -

Vel KY S = V(X T)
v, o
—_— = Ho(X
dt VXk 0( 7V)

Neural network Hamiltonian function: Hy(X,V)

— assumption: separable Hamiltonian

— take implicitly into account the electric force

— ensure large time stability of the reduced dynamics

Learning
R Ng At o V+At \7A
0= i uiak B LR Ho(X:, Vi AL A2
aregergm ‘ A7 Vi Ho( ) +H A7 +V
=1
data: numerical simulations at different times (X, V, X T8t V4%,

Architecture fully connected




Numerical results

Initial condition:

flz,v,t) = 1—0.5,0.5/ (%) exp(—v?/2)

Numerical method:
@ compression
® simulation of the reduced model

© decompression

Phase portrait

Reference (PIC) PSD reduction (K=35) Neural Network reduction (K=8)
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Numerical results
Initial condition:
f(% v, t) = 1[—0.5,0<5]($) eXP(—UQ/Q)
Numerical method:
@ compression

® simulation of the reduced model

® decompression

—— encoder's identity
—— Mg + stormer-verlet, At=1e -3

1014 — Festeuler, At=1le-3
—— Fs+RK4, At=1e—3
Fs + RK4, At=1e—-2

— Hamiltonian reduced dynamics: better control of the numerical error
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Numerical results

Initial conditions:

f(z,v,t) = Ca®(1 — 2)*? exp(—0v?/2)

Goal: learn the dynamics for a € [2.2, 3.6]

Data: dynamics of N = 10 particles with o € {2.2,2.6,3,3.4,3.6}

w — encoder identity
— dlecompressed HNN prediction

10 15 20 25 30 35 40 45 50

Error for the whole strategy

— reduced method: 25 times faster
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@ Conclusion
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Conclusion

Construction of reduced models

e Fluid closure based on a V-net architecture supervised learning

o Particle reduced dynamics based on auto-encoder architecture
semi-supervised learning

e stability properties observed/ensured

Perpectives:
o Extension to dimension 2 or 3
e Add a magnetic field

e Use in real applications

Ongoing ANR project with Max-Planck Institut fiir Plasma Physics (Garching).

33/33



	Neural networks
	Fluid closure
	Particle reduced model
	Conclusion

