Neural networks and reduced models for plasmas

Laurent Navoret

IRMA, Université de Strasbourg and INRIA Nancy-Grand Est, Tonus

Joint work with Léo Bois, Nicolas Crouseilles, Emmanuel Franck, Guillaume Steimer, Vincent Vigon

> GDR Emili, Ecole Polytechnique Wednesday 27 October 2021

Context

Plasmas dynamics

- distribution function f(x, v, t) in phase space (high-dimension)
- multi-scale (mass ratio, quasineutrality, collisions, anisotropy)

- \rightarrow full simulations: time and memory demanding
- \rightarrow need for reduced models for real-time simulations for diagnostics or control

Goal

- reduced models based on neural networks
- study of the stability and accuracy once used numerically
- one-dimensional test

Plan

1 Neural networks

2 Fluid closure

3 Particle reduced model

4 Conclusion

3/33

Plan

1 Neural networks

2 Fluid closure

③ Particle reduced model

4 Conclusion

4/33

Neural Network

Neural Network: parametrized function

 $\mathcal{F}_{\hat{\theta}}(X)$

approximation of a real unknown function $\mathcal{F}(X)$ (ex: physical quantity)

Fit data (supervised learning)

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \sum_{i} \operatorname{distance} \left(\mathcal{F}(X_i), \mathcal{F}_{\theta}(X_i) \right)$$

data: $(X_i, \mathcal{F}(X_i))_i$ \rightarrow optimization algorithm

Difficulty

 \rightarrow X: a vector of large dimension (ex: image from simulations)

Neural Network

Neural Network: parametrized function

$$Y = \mathcal{F}_{\theta}(X) = \sigma \left(W^{(d)} \sigma \left(W^{(d-1)} \sigma \left(\cdots \sigma \left(W^{(0)} X \right) \right) \right) \right)$$

- · succession of layers
- one layer: linear combination followed by a non-linear activation function

$$Y^{(p+1)} = \sigma \left(W^{(p)} Y^{(p)} \right)$$

 $W^{(p)}$: weights matrices $\sigma(a) = \max(a, 0)$

• parameters: $\theta = (W^{(p)})_p$

Example: fully connected neural network

Neural Network

A lot of applications in signal analysis

- image classification
- image segmentation
- speech recognition
- \rightarrow based on GPU implementation
- \rightarrow large of amount of data
- → user-friendly library (keras)
- → mathematical properties (separation, symmetries, multi-scale) [Mallat, 2015]

Used for the construction of reduced models in physics: 2 examples

- Fluid closure
- Particle reduced model
- \rightarrow specific architecture
- \rightarrow specific data processing

Plan

1 Neural networks

2 Fluid closure

8 Particle reduced model

4 Conclusion

8/33

Plasma model

Different description

- Kinetic description for collisionless plasma (ε > 1) distribution function f(x, v, t), with x ∈ [0, L], v ∈ ℝ, t ≥ 0
- Fluid description for collisional plasma ($\varepsilon < 10^{-2}$) density $\rho(x, t)$, velocity u(x, t), temperature T(x, t)
- \rightarrow Knudsen number ε : mean free path between two collisions / L
- → fluid description are cheaper
- \rightarrow extend the range of validity of fluid models to weakly collisional plasma

Kinetic model

One-dimensionnal Vlasov-Poisson model on [0, L]:

$$\partial_t f + v \partial_x f - E \partial_v f = \frac{1}{\varepsilon} (M(f) - f)$$

 $E = -\partial_x \phi, \quad -\partial_{xx} \phi = \frac{1}{L} \int_0^L \rho(t, x) \, dx - \rho$

+ spatial periodic boundary conditions

BGK collision operator

- relaxation to a Maxwellian $M(f)(x,v,t) = \frac{\rho(x,t)}{\sqrt{2\pi T(x,t)}} e^{-\frac{(v-u(x,t))^2}{2T(x,t)}}$
- ρ , u, T: moments of the distribution function f

$$\begin{split} & [\mathsf{density}] & [\mathsf{pressure}] \\ & \rho(x,t) = \int_{\mathbb{R}} f(x,v,t) dv & p(x,t) = \int_{\mathbb{R}} f(x,v,t) (v-u(x,t))^2 dv \\ & [\mathsf{momentum}] & [\mathsf{temperature}] \\ & \rho(x,t) u(x,t) = \int_{\mathbb{R}} f(x,v,t) v dv & \rho(x,t) T(x,t) = p(x,t) \end{split}$$

From kinetic to fluid

Fluid equations satisfied by the moments $(\rho, \rho u, w)$:

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t (\rho u) + \partial_x (\rho u^2 + p) = -E\rho\\ \partial_t w + \partial_x (w u + p u + q) = -E\rho u \end{cases}$$

 $w=\rho u^2/2+p/2{\rm :}$ energy

- \rightarrow heat flux: $q(x,t) = \int_{\mathbb{R}} \frac{1}{2} f(x,v,t) (v-u(x,t))^3 dv$
- \rightarrow system not closed
- \rightarrow Closure: expression of q as a function of the other moments

$$\hat{q} = \mathcal{C}(\varepsilon, \rho, u, T)$$

\rightarrow first possibilities

- [Euler closure] $f = M(f) + O(\varepsilon) \implies \hat{q} = 0$
- [Navier-Stokes closure] $f = M(f) + \varepsilon g + O(\varepsilon^2) \Rightarrow \hat{q} = -\frac{3}{2} \varepsilon p \partial_x T$

Closure

Validity model [Torrilhon, 2016]

Extend range of validity of fluid models

- higher order terms in Chapman-Enskog
- higher order moments (Grad 13 model)
- higher order moments based on entropic closure (Levermore 14 moment)
- \rightarrow ill-posed systems

Add specific kinetic

- Landau damping effect
- Hammett-Perkins closure
 [Hammett, Perkins 90, 92]
 - → fitting dispersion relation of the linearized equation
 - \rightarrow q as Hilbert transform of the temperature

$$\hat{q}_k = -i n_0 \sqrt{\frac{8}{\pi}} i \; \mathrm{sign}(k) \hat{T}_k$$

- → non-local closure
- Many extensions in the case of magnetized plasmas

Neural Network closures

Neural network closures:

- turbulent flows [Zhou et al. 2020]
- higher moments for neutral fluid [Han et al, 2019]
- learning known plasma closures [Ma et al. 2020] [Maulik et al. 2020]

Goal : insert a data driven closures into fluid solvers for $\varepsilon \in [0.01, 1]$

- \rightarrow Off-line phase: supervised learning from kinetic simulations
- \rightarrow On-line phase: compute the closure at each time step of the fluid solver

Closure

Non-local Neural Network closure

$$X = (\varepsilon, \rho, u, T) \in (\mathbb{R}^{N_x})^4 \quad \longrightarrow \quad \hat{q} = C_{\hat{\theta}}(\varepsilon, \rho, u, T) \in (\mathbb{R}^{N_x})^4$$

 $\hat{\theta} \in \Theta$: set of parameters

Training: solve the optimization problem (gradient method)

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \; \frac{1}{|\mathcal{D}|} \sum_{(X;q) \in \mathcal{D}} \frac{1}{N_x} \sum_{i=1}^{N_x} |C_{\theta}(X)_i - q_i|$$

 ${\mathcal D}$ data set $C_{\theta}(X) \text{: prediction of the neural network} \\ q \text{: true heat flux}$

- \rightarrow Define the architecture of the network
- → Generate data

Architecture

Convolutional neural network

- \rightarrow sparse neural networks
- → very efficient for structured data (image, signals)
- \rightarrow each layer: several 1D convolutions with small kernels followed by activation functions

 $\begin{array}{l} \text{input: } X \text{ of shape } (N,d) \\ \text{output: } Y \text{ of shape } (N,d') \\ \text{kernel: } K \text{ of shape } (p,d,d') \text{ size } p \end{array}$

$$Y_{i,k} = \sigma\left(\sum_{j=1}^{d} \sum_{di=1}^{p} X_{i+di,j} K_{di,j,k}\right)$$

 \rightarrow scalar product with the kernel: measure of similarity

Architecture

One-dimensional V-net architecture [Ronneberger et al., 2015] [Milletari et al., 2016]

- multi-scale analysis (like in wavelet analysis)
- based on up-samplings and dow-samplings
 - $\rightarrow\,$ down-sampling: decrease the size of the signals / increase the number of channels
 - \rightarrow up-samping: increase the size of the signals / decrease the number of channels
- shortcut: add the input to output for accelarating the training process

Architecture

Choice of the hyperparameters:

Value
512
5
4
11
softplus

softplus:
$$\sigma(x) = \ln(1 + \exp(x))$$

 $\rightarrow 15$ layers

Neural network parameters to learn

- $O(2^{\ell}d^2pN)$
- Here: 161 937 parameters

Full closure

For learning and flexibility:

- \blacksquare Resampling to a given resolution N_x^\prime and preprocessing (standardization of the data)
- **2** Slicing into overlapping "windows" of size N = 512
- 8 Neural network
- 4 Reconstructing
- **6** Post-processing, smoothing and resampling

$$C_{\theta}: X \stackrel{(\mathsf{Re})+(\mathsf{P})}{\longmapsto} X^{(P)} \stackrel{(\mathsf{Sl})}{\longmapsto} (X^{(P)}_{j})_{j} \stackrel{(\mathsf{NN}_{\theta})}{\longmapsto} (\hat{Y}^{(P)}_{j})_{j} \stackrel{(\mathsf{R})}{\longmapsto} \hat{Y}^{(P)} \stackrel{(\mathsf{P'})+(\mathsf{Sm})+(\mathsf{Re})}{\longmapsto} \hat{Y}.$$

Data generation

Data generation by kinetic solver: for each simulation

• initialization: $f_0(x) = M(\rho, u, T)$, with ρ , u and T as Fourier series :

$$\alpha \times \left(\frac{a_0}{2} + 0.5 \sum_{n=1}^{20} (a_n \cos(nx) + b_n \sin(nx))\right), \quad x \in [0, 2\pi].$$

 a_n, b_n : random

- $\varepsilon \in [0.01, 1]$: non-uniform distribution
- 20 recording time $t_1, t_2, \ldots, t_{20} \in [0.1, 2]$
- → discretization parameters: $N_x = 1024$, $N_v = 141$
- → Finite Volume in space / Finile Element method in velocity [Helluy et al., 2014]

 $20 \times 500 = 10\,000$ different spatial data for training $20 \times 500 = 10\,000$ different spatial data for validation

Data generation

Data generation by kinetic solver: for each simulation

Output normalization

- · avoid too small values of the heat flux prediction
- normalisation with the Navier-Stokes heat flux:

$$q_{\mathsf{norm}}^{k_0} = \left\{ \begin{array}{ll} q^{k_0} \times \frac{\theta}{q_{NS}^{k_0}}, & \text{if } 0 < q_{NS}^{k_0} \leqslant \theta, \\ \\ q^{k_0}, & \text{otherwise}, \end{array} \right.$$

Examples from the validation set:

Learning results

 L^2 relative error on the validation set:

 \rightarrow For large ε : neural network closure better than Navier-Stokes one

 \rightarrow relative error independent of the Knudsen number $\approx 10^{-1}$

Fluid model with neural network

Electric energy

Fluid solver+Network: $\hat{q} = C_{\theta}(\varepsilon, \rho, u, T)$ compared with:

- Fluid +Kinetic ($\hat{q} = q$)
- Fluid +Navier-Stokes ($\hat{q} = -\frac{3}{2}\varepsilon p \,\partial_x T$)

- \rightarrow for large ε : good results for Fluid+Network
- \rightarrow error on Fluid+Kinetic due to numerical approximations

Fluid model with neural network

 $L^2 \ {\rm error}$ on density, momentum, energy on $200 \ {\rm simulations}$

Fluid solver+Network: $\hat{q} = C_{\theta}(\varepsilon, \rho, u, T)$ compared with:

- Fluid +Kinetic ($\hat{q} = q$)
- Fluid +Navier-Stokes ($\hat{q} = -\frac{3}{2}\varepsilon p \,\partial_x T$)

- → cannot expect better than Fluid+Kinetic
- \rightarrow relative error ≈ 0.2
- → Fluid+Network errors vary like the Fluid+Kinetic one

Stability

 \rightarrow no guarantee of stability \rightarrow instabilities triggered by irregular reconstruction of the heat flux due to slicing

Smoothing of the output

$$\tilde{q}(x) = \int_{-3\sigma}^{3\sigma} q(x+t)w(t) \, dt.$$

w: Gaussian kernel with standard deviation $\boldsymbol{\sigma}$

Numerical results: proportion of simulations reaching final time

 $\rightarrow \sigma = 0.06$ leads to stable numerical simulations

Stability

Convergence

Two options for considering refined grids

 \rightarrow option 1: use slicing

 \rightarrow option 2: use downsampling to the refinement used for learning

 \rightarrow keep close to the data used in training set (same resolution)

Plan

1 Neural networks

2 Fluid closure

3 Particle reduced model

4 Conclusion

24/33

Particle In Cell method

Particle In Cell method: N macro-particles $(X_j, V_j) \in \mathbb{R}^2$

$$\forall j \in \{1, \dots, N\}, \qquad \frac{dX_j}{dt} = V_j$$
$$\frac{dV_j}{dt} = \frac{q}{m} (E_h + E_{\text{ext}})(X_j)$$

 $E_h = -\nabla \phi_h$: approximated **self-consistent** electric field $E_{\text{ext}} = -\nabla \phi_{\text{ext}}$: external electric field

- → Hamiltonian dynamics
- \rightarrow costly numerical simulations

 \rightarrow Goal: describe the dynamics locally around a given trajectory with $K \ll N$ reduced "particles"

Reduction

1. Find out reduced variables:

$$u = (X, V) \in \mathbb{R}^{2N} \xrightarrow[\text{compression}]{} \bar{u} = (\bar{X}, \bar{V}) \in \mathbb{R}^{2K} \xrightarrow[\text{decompression}]{} u = (X, V) \in \mathbb{R}^{2N}$$

 \rightarrow fast compression / decompression

Linear reduction: $\bar{u} = Au$

- Proper orthogonal decomposition (POD)
- Proper symplectic decomposition (PSD) [Tyranowski, Krauss, 2019]
- · analytical dynamics on the reduced variables
- \rightarrow valid on linear regime
- \rightarrow but electric field computed from original variables
- \rightarrow back and forth between reduced and original variables

Non-linear reduction: neural networks

→ Auto-encoder architecture

Auto-encoder

Neural network Encoder/Decoder

 $\bar{u} = \mathcal{F}_{\theta}(u)$: encoder $u = \mathcal{G}_{\theta}(\bar{u})$: decoder

Learning:

$$\hat{\theta} = \operatorname{argmin} \sum_{i=1}^{N_d} ||u_i - \mathcal{G}_{\theta}(\mathcal{F}_{\theta}(u_i))||^2$$

→ (u_i) : extracted from numerical simulations at different times → $\mathcal{G}_{\theta} \circ \mathcal{F}_{\theta} \approx \text{Id}$ on the data

Architecture:

→ pooling/unpooling → light architecture to reduce the number of parameters

Numeratical results

Test-case: one numerical simulation with N = 1000 particles

Learning the reduced dynamics

2. Determine the dynamics of the reduced variables:

$$\forall j \in \{1, \dots, K\}, \qquad \frac{dX_k}{dt} = \nabla_{V_k} \bar{H}_\theta(\bar{X}, \bar{V})$$
$$\frac{d\bar{V}_k}{dt} = -\nabla_{X_k} \bar{H}_\theta(\bar{X}, \bar{V})$$

Neural network Hamiltonian function: $H_{\theta}(\bar{X}, \bar{V})$

- → assumption: separable Hamiltonian
- \rightarrow take implicitly into account the electric force
- \rightarrow ensure large time stability of the reduced dynamics

Learning

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmin}} \sum_{i=1}^{N_d} \left\| \frac{\bar{X}_i^{+\Delta t} - \bar{X}_i}{\Delta t} - \nabla_{\bar{V}} \bar{H}_{\theta}(\bar{X}_i, \bar{V}_i) \right\| + \left\| \frac{\bar{V}_i^{+\Delta t} - \bar{V}_i}{\Delta t} + \nabla_{\bar{X}} \bar{H}_{\theta}(\bar{X}_i, \bar{V}_i) \right\|$$

data: numerical simulations at different times $(\bar{X},\bar{V},\bar{X}^{+\Delta t},\bar{V}^{+\Delta t})_i$

Architecture fully connected

Numerical results

Initial condition:

$$f(x, v, t) = 1_{[-0.5, 0.5]}(x) \exp(-v^2/2)$$

Numerical method:

- compression
- e simulation of the reduced model
- 3 decompression

Phase portrait

Reference (PIC)

PSD reduction (K=35) Neural Network reduction (K=8)

Numerical results

Initial condition:

$$f(x, v, t) = 1_{[-0.5, 0.5]}(x) \exp(-v^2/2)$$

Numerical method:

- compression
- e simulation of the reduced model
- 3 decompression

 \rightarrow Hamiltonian reduced dynamics: better control of the numerical error

Numerical results

Initial conditions:

$$f(x, v, t) = C x^{\alpha} (1 - x)^{3/2} \exp(-v^2/2)$$

Goal: learn the dynamics for $\alpha \in [2.2, 3.6]$

Data: dynamics of $N = 10^4$ particles with $\alpha \in \{2.2, 2.6, 3, 3.4, 3.6\}$

Error for the whole strategy

 \rightarrow reduced method: 25 times faster

Plan

1 Neural networks

2 Fluid closure

8 Particle reduced model

32/33

Conclusion

Construction of reduced models

- Fluid closure based on a V-net architecture supervised learning
- Particle reduced dynamics based on auto-encoder architecture semi-supervised learning
- stability properties observed/ensured

Perpectives:

- Extension to dimension 2 or 3
- Add a magnetic field
- Use in real applications

Ongoing ANR project with Max-Planck Institut für Plasma Physics (Garching).