

GDR EMILI – Octobre 2021

Décharges contrôlées par barrière diélectrique : Toujours de la nouvelle physique !

Décharges contrôlées par barrière diélectrique : Toujours de la nouvelle physique !

SOMMAIRE

1) DBD basse fréquence (RF)

- 1) Principe
- 2) Régimes de décharge

2) DBD homogènes de la basse fréquence, kHz, à la radiofréquence (RF), 13.56MHz

- 1) Transition glow-RF
- 2) Caractéristiques des différentes décharges

3) DBD double fréquence: RF-BF

- 1) Effet de l'amplitude de la tension BF
- 2) Identification des régimes de décharges
- 3) Effet de l'amplitude de la tension RF
- 4) Et la photoémission?

4) Conclusion

DBD : un diélectrique solide dans le passage du courant de décharge ou comment la décharge s'éteint

DBD : un diélectrique solide dans le passage du courant de décharge ou comment la décharge s'éteint

Solution robuste pour générer un plasma froid à la pression atmosphérique

Produit (Pxd) élevé + mémoire d'une décharge à la suivante ou du claquage de streamer au claquage Townsend

Claquage de streamer (1 électron -> 1 avalanche -> 1 streamer -> 1 microdécharge) Claquage de Townsend Electrons secondaires à la cathode à l'origine de la décharge

Les DBD homogènes à basse fréquence: luminescente et Townsend

Décharge luminescente He, mélange Penning de gaz rare

PROMES

Décharge de Townsend N₂, air

Décharges contrôlées par barrière diélectrique : Toujours de la nouvelle physique !

SOMMAIRE

1) DBD basse fréquence

- 1) Principe
- 2) Régimes de décharge

2) DBD homogènes de la basse fréquence (kHz) à la radiofréquence (13,56 MHz)

- 1) Transition glow-RF
- 2) Caractéristiques des différentes décharges

3) DBD double fréquence: RF-BF

- 1) Effet de l'amplitude de la tension BF
- 2) Identification des régimes de décharges
- 3) Effet de l'amplitude de la tension RF
- 4) Et la photoémission?

4) Conclusion

Regime de DBD homogènes et fréquence de la tension appliquée

PROMES

Single frequency DBD Pulsed DBD **Dual frequency DBD Townsend DBD** $\ln N_2$, air F. Massines et all. N. Naudé et all. In a Penning gas $Ar^{+}H_{3} => NH_{3}^{+} + e + Ar$ $Ar + NH_3$ 1kHz 10kHz 100kHz 1MHz 10MHz 100Mz 1GHz Glow DBD **Glow like DBD VHF Glow RF Glow** He, Penning gas 200kHz 150MHz He, Ar In Ar and H. Yasutake mixture M. Kong H. Kakiuchi S. Okazaki various gases T. Gans Van de Sanden

Caractérisation optique de la DBD Absorption des Ar* et Emission résolue spatiotemporellement

PROMES

En collaboration avec Nader Sadeghi, laboratoire LiPhy, Grenoble dans le cadre du réseau plasma froid

Modélisation de la DBD en Ar-NH₃ Collaboration avec Gerjan Hagelaar

• <u>Five species</u>: Ar, **Ar***, **Ar+**, **Ar₂+**, **e**

PROMES

Equations:

For all species: continuity and momentum transfert equations coupled to Poisson's equation For electrons: energy equation

Reaction	Rate coefficient	ref	
e + Ar (elastic collision)	F(E/N)	Bolsig+, Arakoni 2007	
e + Ar (inelastic collision)	F(E/N)	Bolsig+, Arakoni 2007	
e + Ar → e + Ar*	F(E/N)	Bolsig+, Arakoni 2007	
$e + Ar_2^+ \rightarrow Ar^* + Ar$	7.35 x 10 ⁻¹⁴ x Te ^{-0.67} m ³ s ⁻¹	Mehr and Biondi	
Ar* → Ar	1.55 x 10 ⁶ s ⁻¹		
e + Ar* → e + Ar	2 x 10 ⁻¹³ m ³ s ⁻¹		
e + Ar* → 2e + Ar+	F(E/N)	Bolsig+, Arakoni 2007	
e + Ar → 2e + Ar ⁺	F(E/N)	Bolsig+, Arakoni 2007	
2Ar* → Ar + e + Ar+	6,4 x 10 ⁻¹⁶ m ³ s ⁻¹ (ratio 30%)	Ferreira 1985	
Ar* →e + Ar ⁺ (Penning simulation)	Ar* ͱϞν₽ϐͺᡧ᠋ᡱ᠑ ᢓᢆ ֈ ၨ֍ՠ՟)→Ar+NH₃⁺+e	Arakoni 2007	
$Ar^+ + 2Ar \rightarrow Ar_2^+ + Ar$	2.5 x 10 ⁻⁴³ m ⁶ s ⁻¹	Arakoni 2007, Lam et al 2000	
$2Ar^* \rightarrow e + Ar_2^+$	6.4 x 10 ⁻¹⁶ m ³ s ⁻¹ (ratio 70%)	Ferreira 1985	

Modélisation de la DBD dans Ar-NH3(200ppm)

CNrs

Regime de DBD homogènes fréquence de la tension appliquée

Regime de DBD homogènes fréquence de la tension appliquée

Regime de DBD homogènes fréquence de la tension appliquée

PROMES

Ar + NH₃ (133ppm)

Regime de DBD homogènes fréquence de la tension appliquée

PROMES

Ar + NH₃ (133ppm)

14

Regime de DBD homogènes fréquence et forme de la tension appliquée

Ar + NH₃ (133ppm)

Regime de DBD homogènes radiofréquence Effet de l'amplitude de la tension

PROMES

gap gazeux 2 mm et 5 MHz

Regime de DBD homogènes fréquence et forme de la tension appliquée

Ar + NH₃ (133ppm)

Regime de DBD homogènes fréquence et la forme de la tension appliquée

•Transition homogène filamentaire : **1 ou 2 W/cm³ en BF et 17 W/cm³ en NRP-DBD**

- Décharge toujours homogène en RF, puissance supérieure à 36 W/cm³
- Tension de claquage 6 fois plus faible en RF qu'en BF

CNIS

Contrôle du transport des électrons : transition TDBD/RF-DBD

36

Caractéristiques des différentes DBD homogènes

Ar + NH₃ (133ppm) Gap=1mm

Tension sinusoïdale					Tension
	Piégeage	e des ions	Piégeage d	es électrons	impulsionnelle
Régimes	GDBD	TDBD	Transition	RF-DBD	NRP-DBD
Puissance	1 W/cm ³	x 2	Une TDBD et une RF-DBD	x 36	x 17
Tension d'amorçage	90	0 V	 dans les mêmes conditions: A des endroits différents 	/ 6	x 3
	Diélecti + Mélange	riques Penning	différentes	Electrode métallique Sans mélange Penning	
Métastable	10 ¹⁰ cm ⁻³			10 ⁸ cm ⁻³	
Electrons	10 ¹⁰ /cm ³			10 ¹² /cm ³ 2 populations électroniques	10 ¹³ /cm ³ Electrons chauds

Décharges contrôlées par barrière diélectrique : Toujours de la nouvelle physique !

SOMMAIRE

1) DBD basse fréquence

- 1) Principe
- 2) Régimes de décharge

2) DBD homogènes de la basse fréquence (kHz) à la radiofréquence (13,56 MHz)

- 1) Transition glow-RF
- 2) Caractéristiques des différentes décharges

3) DBD double fréquence: RF-BF

- 1) Effet de l'amplitude de la tension BF
- 2) Identification des régimes de décharges
- 3) Effet de l'amplitude de la tension RF
- 4) Et la photoémission?

4) Conclusion

Ar + NH_3 (133 ou 200 ppm) Gap=2mm

Dual frequency applied to the electrodes

18

Effet de V_{BF} à 50 kHz avec <u>f_{BF} à 5 MHz</u> (V_{rf} = 300 V) : Intensité normalisée raie d'argon (696 nm)

PROMES

Lumière de la décharge en fonction du temps à l'échelle de la BF

« 2 cathodes du même coté » : $V_{RF} + V_{BF} \rightarrow 7$ champ électrique vue par les ions

42

Time variation of electron production and gas voltage on half a LF cycle

The gamma mode decreases Vg. It is pulsed like a LF DBD.

Alternance des modes gamma et alpha pendant chaque alternance de la BF

Densité lons Ar2+

Tension Gaz

Ion flux to the wall and energy

Aaximum ions flux density to the cathode X 10

PROMES

⇒ Ions energy X 4

Electron production

Penning and direct ionization on a LF cycle as a function of LF amplitude

The secondary electrons increases the direct ionization up to 20%

Contribution des différents mécanismes d'ionisations (simulation)

Ionisation dans le volume plasma \rightarrow « chauffage » ohmique (collision) Ionisation dans la gaine \rightarrow multiplication des électrons secondaires émis à la cathode

PROMES

Contribution des différents mécanismes d'ionisations (simulation)

Variation du taux de de production d'électron sur une période BF (Valeurs moyennées sur une RF)

Critère d'auto entretient de la gaine (simulation)

La gaine cathodique est auto-entretenue si chaque électron secondaire produit suffisamment d'ions dans la gaine pour provoquer l'émission d'un ou plusieurs nouveaux électrons secondaires

Critère d'auto entretient de la gaine (simulation)

γ = 0,05

3 zones visibles

Mode α

Ionisation insuffisante pour auto-entretient

Transition

↑ de l'ionisation au-delà du critère d'auto-entretient

Mode α - γ Ionisation suffisante pour auto-entretient

Le passage d'une gaine non auto-entretenue à une gaine auto-entretenue explique la transition observée d'un mode α à un mode α -y

Effet du coefficient d'émission d'électron secondaire ?

Décharges contrôlées par barrière diélectrique : Toujours de la nouvelle physique !

SOMMAIRE

1) DBD basse fréquence

- 1) Principe
- 2) Régimes de décharge

2) DBD homogènes de la basse fréquence (kHz) à la radiofréquence (13,56 MHz)

- 1) Transition glow-RF
- 2) Caractéristiques des différentes décharges

3) DBD double fréquence: RF-BF

- 1) Effet de l'amplitude de la tension BF
- 2) Identification des régimes de décharges
- 3) Effet de l'amplitude de la tension RF
- 4) Et la photoémission?

4) Conclusion

Spectroscopie d'émission

sion / de 100V de V_{RF}

Émission du continuum A avec A de la V_{RF} appliquée => hypothèse : Ne augmente ?

> Émission d'Ar ↘ avec ↗ de la V_{RF} appliquée => hypothèse : Te local diminue ?

VIA

Modélisation

Diminution de la densité de métastable max avec l'augmentation de la V_{RF} Augmentation V_{RF} de 100V \rightarrow densité d'Ar*/1.6

CNCS UNIVER PERPIG

PROMES

En accord avec les mesures d'absorptions expérimentales

Modélisation

- Te quasi constant dans le bulk
- Te localement pendant le claquage γ

- Ne *i* dans le bulk (+34%)

PROMES

Modélisation

Quand V_{RF} augmente, le plasma est plus dense, le régime gamma apparait pour une tension BF appliquée sur le gaz plus faible → le champ maximum est plus faible

DBD double fréquence RF-BF Rôle de la photoémission?

Ar 1s₃ density measurement near electrode as function of time (experimental in black, calculated in red)

DBD double fréquence RF-BF Effet de la photoémission ?

Modification du schéma cinétique pour rajouter la photoémission induite par les photon V-UV émis par l'excimer Ar₂^{*}

9)	Ar(1s) (+ NH ₃) → Ar (+ NH _x + H _y)	[5]
10)	$Ar(1s) + 2Ar \rightarrow Ar_2^* + Ar$	[6]
11)	Ar₂* → 2Ar + hv	[7]
12)	hv + wall → e + wall	[8]

DBD double fréquence RF-BF Effet de la photoémission?

Ar 1s3 density measurement near electrode as function of time (experimental in black, calculated in green and red)

Densité de métastable avec le schéma avec la photoémission

CONCLUSION

Les DBDs offrent un panel de sources de plasmas froids à la pression atmosphérique très large

Dans un même gaz, pour une même configuration, avec une tension sinusoïdale, en augmentant la fréquence de la tension on obtient successivement:

- une décharge filamentaire
- une décharge luminescente,
- une décharge de Townsend,
- une décharge RF alpha
- Une décharge RF alpha-gamma

En double fréquence RF-BF en augmentant la tension BF on peut :

- pulser la décharge à la fréquence BF,
- alterner les modes alpha et gamma à chaque alternance.

