Chocs produits par laser Une question de plasma avant tout ?

@:laurent.berthe@ensam.eu M:+33 6 87 29 45 88

Shock produced by laser in water confinement regime

Parameters

- Pulse Duration : 1-100ns (shape)
- λ : 1.064 nm
- Spot diameter : <mm</p>
- > Power density : 1-10 TW/cm²
- > Pressure : 100 GPa
- > Repetion rate : <1H</p>

Shock produced by laser in water confinement regime

Parameters for applications

- Pulse Duration : 8-25 ns
- λ : 0.532 -1.064 nm
- Spot diameter : mm
- > Power density : 1-10 GW/cm²
- > Pressure : 1-8 GPa
- > Repetion rate : 1-...1 KHz

Why confined regime?

APL - Fox- 1974

Avantages

- Pression x4 higher than in direct regime
- Loading x2 longer than pulse laser
- Easy to apply and renew

Cheap

Limitation

- Protective layer/ablator layer
- Breakdown plasma in confined material layer
- No use in MRO process conditions

Effect of water and paint coatings on laserirradiated targets $\mathsf{Jay}\,\mathsf{A}.\,\mathsf{Fox}$

Citation: Appl. Phys. Lett. 24, 461 (1974); doi: 10.1063/1.1655012 View online: http://dx.doi.org/10.1063/1.1655012 View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v24/i10 Published by the American Institute of Physics.

Why confined regime?

Avantages

- Pression x4 higher than in direct regime
- Loading x2 longer than pulse laser
- Easy to apply and renew
- Cheap

Limitation

- Protective layer/ablator layer
- Breakdown plasma in confined material layer
- No use in MRO process conditions

Effect of water and paint coatings on laserirradiated targets $\mathsf{Jay}\,\mathsf{A},\mathsf{Fox}$

Citation: Appl. Phys. Lett. 24, 461 (1974); doi: 10.1063/1.1655012 View online: http://dx.doi.org/10.1063/1.1655012 View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v24/i10 Published by the American Institute of Physics.

Laser/opticsTechnologyLaserPropulsion NoDestructiveTechnique MaterialUnderShock Adhesion ExtremeConditions Damaging Urology Aeronautic aserInteraction InterfaceMechanicalTesting ^{Space}LaserShotPeening Disassembling Modeling HyperVeloceImpact AdhesionTest

Principle

High strain rate

- 50 researchers
- 15 Labs
- CoCNRS 910

1 Res.

- 3 Res. Composite/Polymer
- 3 Res. SHM
- 5 Res. Metallurgist
- 1 Res. Modeling

Plasma generation

✓Key Phenomena

- Laser absorption in sub-critical plasma
- Conduction in ablation front
- Conduction at Plasma/water interface

Plasma generation

✓Key Phenomena

- Laser absorption in sub-critical plasma
- Conduction in ablation front
- Conduction at Plasma/water interface

Laser Collisionnal Absorption by Inverse Bremstrahlung

Effect

- Best effiency at short wavelength
- Dependant to gradient (Pulse duration, Power density)

Absorption - 532 nm - 10 ns : 100 %

Plasma Fabbro'model

⊮Hypothesis

- Total absorption
- Perfect Gas
- $\blacktriangleright \alpha$ adjustable parameters given part of laser energy for pressure rise
- Adiabatic cooling

Physical study of laserproduced plasma in confined geometry

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont

Citation: J. Appl. Phys. **68**, 775 (1990); doi: 10.1063/1.346783 View online: http://dx.doi.org/10.1063/1.346783

View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v68/i2

Published by the American Institute of Physics.

Plasma pressure - 10 ns

Key Phenomena $n_c(cm^{-3}) = \frac{10^{21}}{\lambda^2}$ $A_{bi} = 1 - e^{\frac{ZL\lambda^2}{T_e^{3/2}}}$

Effect

- Higher pressure at shorter wavelength
- Plasma Breakdown in water
- \blacktriangleright Good agreement with modeling but...Adjustable parameter α

Free velocity by Doppler Velocimetry

✓Modeling

Analytical modeling from Fabbro

FESTHER (From CEA)

- 1D Hydrodynamic
- Helmotz/tracying
- EOS/law from Solid to plasam
- Shock wave/damage

🖋 on Abaqus

- 3D Hydro
- Shock wave propagation
- Damaging

⊮LsDyna

- 3D Hydro
- Shock wave propagation

Absorption Modeling Pressure Tools Plasma Breakdown Tank

Damaging

Plasma

- Pressure/thermal profile
- Microscopic parameter
- Ablated thickness

Shock wave

- Attenuation
- Interaction multi-interface
- Damage (size/location)
- Stack of multimaterial

Exp/Modeling

CONCLUSION PERSPECTIVE

- Free surface Velocity
- Material transformation (phase/damage)

11/36

Modeling

Analytical modeling from Fabbro

FESTHER (From CEA)

- 1D Hydrodynamic
- Helmotz/tracying
- EOS/law from Solid to plasam
- Shock wave/damage

🖋 on Abaqus

- 3D Hydro
- Shock wave propagation
- Damaging

🖋 LsDyna

- 3D Hydro
- Shock wave propagation

0000000000000000

Absorption Modeling Pressure Tools Plasma Breakdown Tank

Damaging

Plasma

- Pressure/thermal profile
- Microscopic parameter
- Ablated thickness

Shock wave

- Attenuation
- Interaction multi-interface
- Damage (size/location)
- Stack of multimaterial

Exp/Modeling

CONCLUSION PERSPECTIVE

- Free surface Velocity
- Material transformation (phase/damage)

11/36

Journal of Physics D: Applied Physics htms://doi.org/10.1009/1011446/Jahr01

Laser induced plasma characterization in direct and water confined regimes: new advances in experimental studies and numerical modelling

Marine Scius-Bertrand^{1,2}©, Laurent Videau^{1,3}, Alexandre Rondepierre^{2,4}, Emilien Lescoute^{1,3}, Yann Rouchausse², Jan Kaufman¹, Danijela Rostohar³, Jan Brajer³ and Laurent Berthe² ©

- Hephaistos facility
- 532nm, 10 ns

Velocity profile

Journal of Physics D: Applied Physics Transition and R: Edward M. Material Applied

Laser induced plasma characterization in direct and water confined regimes: new advances in experimental studies and numerical modelling

Marine Scius-Bertrand^{1,2}©, Laurent Videau^{1,3}, Alexandre Rondepierre^{2,4}, Emilien Lescoute^{1,3}, Yann Rouchausse², Jan Kaufman¹, Danijela Rostohar³, Jan Brajer³ and Laurent Berthe² ©

- Hephaistos facility
- 532nm, 10 ns

Velocity profile

Pressure Profile

Normalized pressure profile

SHOCK PRODUCED BY LASER PLASMALASER ADHESIONTEST

Journal of Physics D: Applied Physics (mailting own/10) 1000 1011 646 (Jahroba)

Laser induced plasma characterization in direct and water confined regimes: new advances in experimental studies and numerical modelling

Marine Scius-Bertrand^{1,2}©, Laurent Videau^{1,3}, Alexandre Rondepierre^{2,4}, Emilien Lescoute^{1,3}, Yann Rouchausse², Jan Kaufman¹, Danijela Rostohar³, Jan Brajer³ and Laurent Berthe² ©

- ► Hilase, GCLT (CEA)
- Top Hat
- 1064nm, 10 ns, 20 ns, 40ns

Pressure profile

Pressure profile

Extraction

- As input for simulation
- Plasma parameter

Plasma Parameters

Laser parameter	$\lambda = 523 \text{ nm}$ $-\Delta T = 7 \text{ ns}$	$\lambda = 1029$ nm— $\Delta T = 10$ ns	$\begin{array}{l} \lambda = 1053 \\ \mathrm{nm}{-}\!$	$\begin{array}{l} \lambda = 1053 \\ \mathrm{nm}{-}\!$	$\begin{array}{l} \lambda = 1053 \\ \mathrm{nm}{-\!\!\!-\!\!\!-\!\!\!\Delta T} = 40 \ \mathrm{ns} \end{array}$
Breakdown threshold (GW cm ⁻²)	8–10	5–6	5–6	3–4	2–3
Breakdown threshold (J/cm ⁻²)	56-70	50-60	50-60	60-80	80-120
Ablation pressure at the	7.2-8.2	4.7-5.2	4.7-5.2	3.6-4.2	2.9-3.6
threshold (GPa)					
Range of simulated intensities (GW cm ⁻²)	2.5-6.0	//	1.3-5.0	1.5-2.3	0.8-2.0
Plasma temperature range (eV)	10-14	//	8-12	10-12	8-13
Range of plasma thickness (µm)	8-12	//	9-13	17-20	20-30
Range of ablated aluminum thickness (µm)	1.7–3.0	//	2.2–2.3	3.5-3.9	3.2-5.5

Laser Plasma breakdown at the surface of water

Laser Plasma breakdown at the surface of water

Figure IV-4: Observation de l'interaction confinée par eau avec la caméra rapide: I_{ue} = 28 GW/cm², (a) t=-10 ns, (b) t=0 ns.

 $\frac{dn_e}{dt} = \textit{MultiPHotonionisation} + \textit{AvalancheElectronique} + ...\textit{Pertes}$

$$\begin{array}{l} MPH: A + h\nu - > A^{+} + e^{-} \\ AV: A + e^{-} h\nu - > A^{+} + 2e^{-} \end{array}$$

Transmission=0 at n_c

Tank configuration

Jour	nal	of			
Laser	Ap	pl	ica	tior	

Laser interaction in a water tank configuration: Higher confinement breakdown threshold and greater generated pressures for laser shock peening

- Hephaistos facility
- 532nm, 10 ns

Transmission

30	1000	1.01	
	anna	. • !	

Laser interaction in a water tank configuration: Higher confinement breakdown threshold and greater generated pressures for laser shock peening

- Hephaistos facility
- 532nm, 10 ns

Transmission

- Pressure up to 12 GPA
- Patented configuration

Pressure Profile

Normalized pressure profile

A long time ago...

Wright Flyer 1903 all with natural material/bonding

Weak bond detection for Carbone Fibers Reinforce Polymer assemblying

Issues ?

- How to ensure properties during manufacturing and use ?
- How to quantify the state of composite structure ?
- NDT can not discriminate weak bond because two parts are in contact

US C-scan of weakbond

LASAT > selective sollicitation

Double Impact

Symetrical Impact - Patented

adhesion test

- Well-controlled Mechanical Sollicitation
- Local Proof test no contact
- Target recovering and diagnostic

LASAT > selective sollicitation

Symetrical Impact - Patented

adhesion test

- Well-controlled Mechanical Sollicitation
- Local Proof test no contact
- Target recovering and diagnostic

LASAT > selective sollicitation

adhesion test

- Well-controlled Mechanical Sollicitation
- Local Proof test no contact
- Target recovering and diagnostic

How does it work?

Sollicitate, Reveal, Detect : Shock laser + US C-scan - PhD R.Ecault

90° transverse direction

Without shock sollicitation > no weak bond detection >LASAT reveal weak bond

but... 3 mm is limit detection

Sollicitate, Reveal, Detect : Shock laser + US C-scan - PhD R.Ecault

- Without shock sollicitation > no weak bond detection >LASAT reveal weak bond
- but... 3 mm is limit detection

EUs Projects to NDT assessments

- Controled contamination of assemblying
 - Monopulse "Very weak" Production scenarios

s CommonNDI 2 Symetrical pulses - Weaks and Extented to Repair scenarios

EUs Projects to NDT assessments

Controled contamination of assemblying

- Monopulse - "Very weak" Production scenarios

Release agent detection sensitivity- Laser Shock

- No damage inside base material
- Threshold damage decreases with release agent level contamination
- But...adhesion at 20% of correct bond

Release agent detection sensitivity- Laser Shock

- No damage inside base material
- Threshold damage decreases with release agent level contamination
- But...adhesion at 20% of correct bond.

SHOCK PRODUCED BY ASKER CONCENTION CONCLUSION PERSPECTIVE CONCLUS PERSPECTIVE CONCLUS PERSPECTIVE CONCLUS PERSPECO

All contaminations - PhD Maxime Sagnard

- No damage inside base material
- Impossible Test with monopulse
- Detection of all levels of contanimation

Design by Simulations - monopulse configuration

- Simulation using Abaqus
- Sollicitation tracking to design

Space time diagram - full scale

80% of the maximum stresses

Same sollicitation in depth - selection by bond

Design by Simulations - Symetrical configuration

- Simulation using Abaqus
- Sollicitation tracking to design

Space time diagram - full scale

80% of the maximum stresses

Sollicitation at the interface

2500 3000

 $^{-1}$

Representative Panels

Production Panel

Fig. 10. Production panel: (a) front view with laser shot position and (b) side view with specified thicknesses.

Repair Panel

Fig. 11. (a) figure of the shot pattern realised on the repair panel and (b) cross-section of the repair patch geometry.

Lien Vidéo

demonstration/validation

		SYMMETRICAL SHOT SETUP			SINGLE SHOT SETUP		
Panel	Area	S-LASAT threshold I _t (intensity per beam)	Total number of shots at 80% of I _t	Number of opened bonds	LASAT threshold It (total intensity)	Total number of single shots at 80% of It	Number of opened bonds
Production	Healthy	0.85GW/cm²	32	0			
	Contaminated		21	21			
Repair	Healthy	0.72GW/cm ²	8	0	0.84GW/cm ²	7	0
	Contaminated		8	8		10	2
		Success rate: 100%			Success rate: 20%		

Bonding of Aircraft Composite Structures

OPEN ACCESS

LASMALASER

ADHESIONTEST

CONCLUSIONPERSPECTIVE

33/36

WeakBondDetection Lasat Results Demonstration

Conclusion

- New progress on processes related to laser control and Hydrodynamic simulations
- Laser shock peening : repetition rate, small spot, fiber

Perspectives

- New lab and academic facility
- Multiscale simulations for design

Laser shock projects

Remerciements

Chercheurs/PHDs

- PIMM : Y.Rouchausse, M.Gervais, B. Fayole, M. Rebillat, N. Mechbal
- L.Videau (CEA), F. Touchard (PPrime), M. Boustie (PPrime), K.Tserpes (U.Patras), K. Brune (IFAM)
- PHDs : M. Sagnard, S. Bardy, D. Courapied, M. Ghrib
- Running PhD : C.Le Bras, A.Rondepierre, M. Scius-Bertrand, L. Lapostole, M. Guerbois, Selen Unaldi

Partenaires

- Compochoc : Rescoll, Airbus, Safran, Thales, IDIL, PIMM, CEA, laser métrologie, Kuka
- Monarque : Safran, Airbus, Safran, Dassault, Thales, Imagine Optic, CEA, PIMM
- Forglaser : Airbus, Thales, PIMM, I2M, Imagine Optic, CEA

Funding

*** île**de**France**

@ :laurent.berthe@ensam.eu M: +33 6 87 29 45 88

