

Journées 2021 25-28 octobre 2021, Palaiseau

atelier

Plasma laser : diagnostic et modélisation

première partie Plasmas en équilibre

Arnaud Bultel¹ et Jörg Hermann²

¹ CORIA, Normandie Université, CNRS, 76801 Saint-Étienne du Rouvray

² LP3, CNRS, Aix-Marseille Université, 13009 Marseille

dépend de nombreux paramètres

laser

EMILI

longueur d'onde λ_{las} durée d'impulsion τ_{las} énergie E_{las} fluence F_{las} focalisation, ...

matériau

réflectivité R coefficient d'absorption α couplage électron-réseau τ_{e-i} conductivité thermique, K_{th} autres propriétés thermophysiques C_p , T_{fus} , T_{vap} , H_{fus} , H_{vap}

environnement

nature du gaz pression P_{gaz} liquide

longueur de pénétration optique

$$\delta_{opt} = \alpha^1$$

longueur de diffusion thermique

$$\delta_{th} = 2\sqrt{\chi \, \tau_{las}}$$

$$\chi = \frac{k_{th}}{\rho C_p}$$

dépend de nombreux paramètres

laser

DR

GDR

EMILI

dépend de nombreux paramètres

Chauffage des électrons par laser

 \Im dépendance de λ_{las}

Énergie pondéromotrice (quiver energy)

Énergie cinétique moyenne d'un électron dans un champs EM

EMILI

champ

 $e^2 \varepsilon^2$

 $E_q =$

électrique

chauffage des électrons nécessite collisions

Chauffage des électrons par laser

 \Im dépendance de λ_{las}

taux de gain d'énergie

EMILI

The strain the strain the strain the strain the strain the strain terms of terms

 $\frac{dE}{dt} = E_q \times v_{coll}$ fréquence de collision $\frac{dE}{dt} = \frac{e^2 \varepsilon^2}{m\omega^2} \times v_{eff} \frac{\omega^2}{\omega^2 + v_{eff}^2}$ fréquence de collision effective

(plasma fortement ionisé @ interaction avec multiple particules)

 $v_{eff} > \omega \Rightarrow$ taux de chauffage diminue avec v_{eff}

collisions multiples au cours d'un cycle optique

 $v_{eff} < \omega \quad \Rightarrow \quad \text{taux de chauffage diminue avec } \omega$

regimeration taux de chauffage augmente avec λ_{las}^2

Chauffage des électrons par laser

GDR

In dépendance de λ_{las}

GDR

$regime de \tau_{las}$

laser

The second ance de τ_{las}

dépend de nombreux paramètres

grande variabilité des propriétés

⇒ applications nombreuses

- traitement et nettoyage de surface
- micro-usinage et nanostructuration des matériaux
- dépôt de couches minces (PLD)
- génération de nanoparticules
- analyse des matériaux (LIBS)
- source de rayonnements XUV, ...

complexité des mécanismes mis en jeu

⇒ modélisation difficile

- aide à la compréhension
- description de tout le processus impossible à ce jour

diagnostic couplé à la modélisation P

GDR cnrs **Imagerie rapide EMILI** à l'aide d'une caméra ICCD porte d'observation laser $\Delta t_{gate} << t_{mesure}$ laser temps t_{las} t_{mesure} 5 ns ICCD + δ_{opt} δ_{th}

DR

EMILI

CNrs

Position latérale (mm)

15

DR

EMILI

DR

EMILI

Position latérale (mm)

FDR

EMILI

Position latérale (mm)

GDR

EMILI

CNrs

GDR

GDR

GDR

Cnrs

GDR

Cnrs

caractérisation de la dynamique d'expansion

GDR

EMILI

CNrs

caractérisation de la dynamique d'expansion

modèle Sedov-Taylor Propagation l'onde de choc

$$Z = \gamma (\frac{E_0}{\rho_0})^{1/2} t^{2/5}$$

GDR

EMILI

Cnrs

In dépendance de λ_{las}

<u>- D R</u>

Densité critique

- = densité électronique pour laquelle le plasma devient opaque
- Champs électrique laser crée écarts de neutralité
- \Rightarrow le plasma réagit

fréquence plasma (électronique)
$$\omega_p = \sqrt{\frac{e^2 n_e}{\varepsilon_0 m}}$$

 \Rightarrow onde EM peut se propager si $\omega_{rad} > \omega_p$

densité critique = n_e pour laquelle ω_p = ω_{rad}

exemple : laser CO₂ (λ_{las} = 10,6 µm) $\Rightarrow n_{crit}$ = 1×10¹⁹ cm⁻³

plasma atmosphérique opaque pour laser CO₂

Densité critique

= densité électronique pour laquelle le plasma devient opaque

- Champs électrique laser crée écarts de neutralité
- \Rightarrow le plasma réagit

fréquence plasma (électronique) $\omega_p = \sqrt{\frac{e^2 n_e}{\varepsilon_0 m}}$

 \Rightarrow onde EM peut se propager si $\omega_{rad} > \omega_p$

densité critique = n_e pour laquelle $\omega_p = \omega_{rad}$

exemple : laser CO₂ ($\lambda_{las} = 10,6 \ \mu m$) $\Rightarrow n_{crit} = 1 \times 10^{19} \ cm^{-3}$

[©] plasma atmosphérique opaque pour laser CO₂

génération d'une onde d'absorption

DR

EMILI

Ombroscopie ultrarapide

SR

dépendance de P_{gaz}

EMILI

longueur d'onde λ_{las} durée d'impulsion τ_{las} énergie E_{las} fluence F_{las} focalisation, ...

matériau

réflectivité R coefficient d'absorption α couplage électron-réseau τ_{e-i} conductivité thermique, K_{th} autres propriétés thermophysiques C_p , T_{fus} , T_{vap} , H_{fus} , H_{vap}

environnement

nature du gaz pression P_{gaz} liquide

sous vide

- \Rightarrow expansion libre
- ⇒ collisions limitées
 - à la phase initiale d'expansion
- ⇒ état « d'ionisation congelée »

en présence d'un gaz

- \Rightarrow interaction vapeur-gaz
- ⇒ processus collectifs/non-collectifs (ondes de choc, diffusion, ...)
- \Rightarrow effet de confinement
- \Rightarrow durée de vie augmente avec P_{gaz}

Fluorescence induite par laser

observation du plasma « froid »

GDR

dépôt de couches minces par ablation laser (PLD)

PLD réactive 🖙 synthèse de films de haute pureté

réactions en gaz phase dépendent de la pression

 P_{gaz} < 10 Pa @ synthèse de la couche mince sur le substrat P_{gaz} > 10 Pa @ réactions dans le volume

32

décharge RF auxiliaire pour nitruration

à la pression atmosphérique

Plasma proche de l'équilibre thermodynamique local

⇒ simulation du spectre d'émission possible

EMILI

transfert de rayonnement

$$n(z)\frac{d}{dz}\left(\frac{I(z)}{n^2(z)}\right) = \varepsilon(z) - \alpha(z)I(z)$$

I(z) I(z+dz)n(z)

plasma uniforme $I(z) = \frac{\varepsilon}{\alpha}(1 - e^{-\alpha z})$ ETL 🖙 Kirchhoff

 $B^{o}_{\lambda} = \frac{\varepsilon}{\alpha}$ $B^{o}_{\lambda} =$ luminance spectrale du corps noir

luminance spectrale

plasma: $n \cong 1$

- $B_{\lambda} = B_{\lambda}^{o}(1 e^{-\alpha L})$
- α = coefficient d'absorption
- L = diamètre du plasma le long l'axe d'observation

couplée à la modélisation du plasma en ETL

Plasma d'ablation laser sous air en ETL ?

Lam et al. Spectrochimica Acta Part B (2014)

 T_{ion}^{exc} = température d'excitation des ions Al⁺ T_{atom}^{exc} = température d'excitation des atomes Al T_{rot} = température rotationnelle des molécules AlO

$$T_{ion}^{exc} \cong T_{atom}^{exc} > T_{rot}$$

 \Rightarrow conclusion de Lam et al.

plasma hors équilibre

couplée à la modélisation du plasma en ETL

Plasma d'ablation laser sous air en ETL?

couplée à la modélisation du plasma en ETL

Plasma d'ablation laser sous air en ETL ?

luminance spectrale :

 $B = \frac{B_{C}^{0}(1 - e^{-\alpha_{C}L_{C}})}{e^{-\alpha_{P}L_{P}}} + B_{C}^{0}(1 - e^{-\alpha_{P}L_{P}})$

coefficient d'absorption :

$$\alpha(\lambda,T) = \pi r_0 \lambda^2 f_{lu} n_l P(\lambda_0,\lambda) (1 - e^{-hc/\lambda kT})$$

molecules :

T, n_e, L

elemental fractions

LTE plasma composition

absorption coefficient

(spectral line profile)

radiation transport

(uniform or non-uniform)

compare to measured spectrum

boucle de calcul solution analytique de l'équation de transfert radiatif

➡ itération rapide

DR

EMILI

couplée à la modélisation du plasma en ETL

couplée à la modélisation du plasma en ETL

DR

dépendance de la nature du gaz ?

environnement nature du gaz

pression P_{gaz} liquide

GDR

Influence de la nature du gaz

CNrs

DR

Influence de la nature du gaz

CNrs

EDR

spectroscopie avec spectromètre à échelle Ś

GDR

EMILI

Iarge gamme spectrale avec grand pouvoir de résolution

diagnostic précis possible

sélection des raies = compromis

+ autoabsorption

EMILI

 \Rightarrow erreur de mesure **augmente** avec au

+ rapport signal-sur-bruit

 \Rightarrow erreur de mesure **diminue** avec τ

exemple : acier

mesure n_e avec Fe I 538.33 and Fe I 382.78 nm

spectre Echelle

 $\ensuremath{^{\textcircled{CP}}}$ observation simultanée de $\approx 10^4$ raies

mesure des paramètres Stark des centaines de raies

diagnostic précis possible

⇒ raies intenses sature à la luminance du corps noir

The mean of the m

 $B_{\lambda} = B_{\lambda}^{o}(1 - e^{-\tau})$ rightarrow optiquement épais ($\tau >> 1$) $\Rightarrow B_{\lambda} = B_{\lambda}^{o}$

⇒ raies intenses sature à la luminance du corps noir

DR

température d'excitation atomique = température du corps noir

⇒ raies intenses sature à la luminance du corps noir

température d'excitation atomique = température du corps noir

(CNrs)

SR

avec spectromètre à échelle

Iarge gamme spectrale avec grand pouvoir de résolution

étalonnage extrêmement sensible à la température

étalonnage spectral et fonction de réponse

👁 étalonnage en intensité difficile

source requise avec faible variation en intensité sur large gamme spectrale

S

EXAMPLE Etalonnage du spectromètre par plasma laser

plasma uniforme en ETL @ calcul précis du spectre

ablation de l'acier @ spectre riche, valeurs A_{ul} précises sur NIST

Réponse de l'appareil déduite du rapport I_{mes} / I_{comp}

GDR **Etalonnage du spectromètre par plasma laser EMILI**

écart-type des fluctuations = intervalle de confiance moyenne des A_{ul} = 15%

$regimerries plasma laser = moyen pour mesurer <math>A_{ul}$

Plasma laser : diagnostic et modélisation

première partie

Plasmas en équilibre

plasma produit par ablation laser :

- processus complexe, dépend de nombreux paramètres
- rande variabilité des conditions exp. et des propriétés du plasma
- modélisation de la dynamique d'expansion « qualitative »
- diagnostic pour meilleur compréhension

(imagerie rapide, ombroscopie ultrarapide, FIL, spectroscopie optique, ...)

plasma atmosphérique produit par ablation laser nanoseconde :

- équilibre thermodynamique local
- The second secon
- perspectives comme source de rayonnement « idéale » (étalonnage des spectromètres, mesures de données spectro., analyse élémentaire, ...)

EMIL

