

Journées 2021 25-28 octobre 2021, Palaiseau

atelier

Plasma laser : diagnostic et modélisation

seconde partie Plasmas en déséquilibre

Arnaud Bultel¹ et Jörg Hermann²

¹ CORIA, Normandie Université, CNRS, 76801 Saint-Étienne du Rouvray

² LP3, CNRS, Aix-Marseille Université, 13009 Marseille

 $T_{s} < 0.9 T_{c}$

Heating within the material: due to e- at T_e Characteristic time for e-phonons equilibrium $\sim 10 \ ps$ $\Rightarrow e$ -heavies equilibrium within the material

Classical heating driven by the generalized Fourier equation

$$\frac{\partial(\rho h)}{\partial t} + v_{rec} \frac{\partial(\rho h)}{\partial x} = \frac{\partial}{\partial x} \left[k \frac{\partial T_s}{\partial x} \right] - \frac{\partial \varphi_{las}}{\partial x}$$

with φ_{las} depending on the local laser conditions and v_{rec} the recession speed

0.15

° 0.1

0.05

Non-equilibrium on the surface...

R

EMILI

 $T_{s} < 0.9 T_{c}$

Relationship between S and KL conditions \rightarrow Mach \mathcal{M}_{KL}

\mathcal{M}_{KL}	$ ho_{KL}/ ho_s$	T_{KL}/T_s	p_{KL}/p_s
0	1	1	1
0.05	0.927	0.980	0.908
0.1	0.861	0.960	0.827
0.2	0.748	0.922	0.690
0.4	0.576	0.851	0.490
0.6	0.457	0.785	0.358
0.8	0.371	0.725	0.269
1.0	0.308	0.669	0.206

Clausius-Clapeyron equation $p_s(T_s) = p_{atm} exp\left[\frac{\Delta h_b m}{k_B}\left(\frac{1}{T_b} - \frac{1}{T_s}\right)\right]$

$0.9 T_c < T_s < T_c$

Formation of $\mu\text{-bubbles}$ within the liquid \rightarrow Explosive boiling lasting more than the laser pulse

 $T_{s} > T_{c}$?

Not phase change anymore \rightarrow Supercritical fluid

Phase non-equilibrium

4

The ECHREM* code

*Eulerian CHemically REactive Multi-component plasma code

Bi-layer model

Assumptions

DR

EMILI

Mass

GDR

EMILI

Cnrs

V. Morel, A. Bultel, I.F. Schneider, C. Grisolia Spectrochim. Acta Part B **127** (2017) 7-19

Shock layer - Argon

Collisional-Radiative model CoRaM-RG

 $Ar + e^{-} \rightleftharpoons Ar^{*} + e^{-}$ $Ar + Ar \rightleftharpoons Ar^{*} + Ar$ $Ar + e^{-} \rightleftharpoons Ar^{*} + 2e^{-}$ $Ar^{*} + e^{-} \rightleftharpoons Ar^{+} + 2e^{-}$ $Ar + Ar \rightleftharpoons Ar^{+} + e^{-} + Ar$ $Ar^{*} + Ar \rightleftharpoons Ar^{+} + e^{-} + Ar$ $Ar^{*} + Ar^{*} \rightleftharpoons Ar^{+} + e^{-} + Ar$ $Ar^{*} + Ar^{*} \rightleftharpoons Ar^{+} + e^{-} + Ar$ $Ar^{+} + e^{-} \rightleftharpoons Ar^{*}ou Ar + Ar$ $Ar^{+} + e^{-} \rightarrow Ar^{*}ou Ar + hv$ $Ar_{i} \rightarrow Ar_{i < i} + hv$

Exc. Elec. Impact Exc. Elec. Impact Ioni. Elec. Impact Ioni. Elec. Impact Ioni. Heavy Impact Ioni. Heavy Impact Penning Ioni. Disso. Recomb. Rad. Recomb. Spont. Emiss.

30 000 elementary processes

Collisional Database

 $k_i(T_{A,e}) = \sqrt{\frac{8 k_B T_{A,e}}{\pi \mu}} \int_{x_0}^{+\infty} x e^{-x} \sigma_i(x) dx \text{ with}$ • $\sigma_i(x) \underset{k_B T_{A,e}}{\varepsilon}$ collisional cross section and • $x = \frac{\varepsilon}{k_B T_{A,e}}$ reduced collision energy Backward rate coefficient deduced from the **Detailed Balance**

Central plasma - Tungsten

Collisional-Radiative model CoRaM-W

 $\begin{array}{l} W_{i} \ + \ e^{-} \rightleftharpoons W_{j>i} + \ e^{-} \\ W_{i}^{+} + \ e^{-} \rightleftharpoons W_{j>i}^{+} + \ e^{-} \\ W_{i}^{+} + \ \Sigma_{i,Z} W_{i}^{Z+} \rightleftharpoons W_{j>i} + \ \Sigma_{i,Z} W_{i}^{Z+} \\ W_{i}^{+} + \ \Sigma_{i,Z} W_{i}^{Z+} \rightleftharpoons W_{j>i}^{+} + \ \Sigma_{i,Z} W_{i}^{Z+} \\ W_{i}^{+} + \ e^{-} \rightleftharpoons W_{j}^{+} + \ 2e^{-} \\ W_{j}^{+} + \ e^{-} \rightleftharpoons W_{2}^{+} + \ 2e^{-} \\ W_{i}^{+} + \ \Sigma_{i,Z} W_{i}^{Z+} \rightleftharpoons W_{j}^{+} + \ e^{-} + \ \Sigma_{i,Z} W_{i}^{Z+} \\ W_{j}^{+} + \ \Sigma_{i,Z} W_{i}^{Z+} \rightleftharpoons W_{2}^{+} + \ e^{-} + \ \Sigma_{i,Z} W_{i}^{Z+} \\ W_{2}^{+} + \ e^{-} \rightleftharpoons W_{j}^{+} + \ h\nu \\ W_{j}^{+} + \ e^{-} \rightleftharpoons W_{i}^{+} + \ h\nu \\ W_{j}^{+} \to W_{i<j}^{+} + \ h\nu \\ W_{j}^{+} \to W_{i<j}^{+} + \ h\nu \\ Thermal Bremsstrahlung \end{array}$

520 000 elementary processes

Radiative Database

NIST, Atomic Line List, ADAS, HULLAC...

V. Morel, A. Bultel, I.F. Schneider, C. Grisolia Spectrochim. Acta Part B **127** (2017) 7-19

The ECHREM* code

GDR

EMILI

*Eulerian CHemically REactive Multi-component plasma code

W (Ar) 10 ps 532 nm 10 J cm⁻²

V. Morel, A. Bultel, I.F. Schneider, C. Grisolia Spectrochim. Acta Part B **127** (2017) 7-19

The ECHREM* code

GDR

EMILI

CNrs

*Eulerian CHemically REactive Multi-component plasma code

Aix*Marseille

universite

The ECHREM* code

GDR

EMILI

CNrs

*Eulerian CHemically REactive Multi-component plasma code

EMILI

CORS GDR

Matter-radiation non-equilibrium...

$$L_{las} \sim \frac{E_p}{\tau_p} \frac{1}{\pi \omega_0^2} \frac{4f^2}{\pi D^2} \Delta \sigma$$

Parameter	Typical value
$E_p(mJ)$	10
$\tau_p (ns)$	5
$\omega_0 \ (\mu m)$	100
f (cm)	10
D (mm)	4
$\Delta\sigma (cm^{-1})$	0.01
$L_{las} (W m^{-2} sr^{-1} m^{-1})$	5×10^{16}

Matter-radiation non-equilibrium...

Radiative recombination

Radiative recombination Multi-photon ionization

 $A^+ + e^- \rightarrow A_i +$ hν Stimulated radiative recombination $A^+ + e^- + nh\nu \rightarrow A_i + (n+1)h\nu$ Photo-ionization $A^+ + e^- + nh\nu \leftarrow A_i + (n+1)h\nu$ $A^+ + e^- + nh\nu \leftarrow A_i + (n + \mathbf{m} \ge 2)h\nu$

Bremsstrahlung

SR

EMILI

Bremsstrahlung Stimulated Bremsstrahlung Inverse Bremsstrahlung

$$e^{-}\left(\frac{1}{2}m_{e}v_{e}^{2}\right) + (A,A^{+}) \rightarrow e^{-}\left(\frac{1}{2}m_{e}v_{e}^{\prime 2}\right) + (A,A^{+}) + hv$$

$$e^{-}\left(\frac{1}{2}m_{e}v_{e}^{2}\right) + (A,A^{+}) + nhv \rightarrow e^{-}\left(\frac{1}{2}m_{e}v_{e}^{\prime 2}\right) + (A,A^{+}) + (n+1)hv$$

$$e^{-}\left(\frac{1}{2}m_{e}v_{e}^{2}\right) + (A,A^{+}) + nhv \leftarrow e^{-}\left(\frac{1}{2}m_{e}v_{e}^{\prime 2}\right) + (A,A^{+}) + (n+1)hv$$

⇒ Absorption of the laser pulse by Inverse Bremsstrahlung and multi-photon ionization

Matter-radiation non-equilibrium...

Multi-photon ionization

DR

EMILI

Inverse Bremsstrahlung

 $P_{IB} \gg P_{MPI}$

Advantages from the spectroscopic point of view...

W energy diagram

EDR

EMILI

Cnrs

H energy diagram

A. Favre, M. Lesage, V. Morel, A. Bultel, P. Boubert International Workshop on LIBS, Dec. 1-2, 2020, Szeged, Hungary

« Double pulse » experiments...

GDR

EMILI

cnrs

Time delay $\Delta t_{1-2} = 350 \ ns$

A. Favre, V. Morel, A. Bultel, G. Godard, S. Idlahcen, C. Grisolia Spectrochim. Acta Part B **175** (2021) 106011

« Double pulse » experiments... Different time delay Δt_{1-2} ps only Al II 358.707 ps only Al II 466.306 $\Delta t_{1-2} = 150 \ ns$ - $(H, \Delta t_{1-2}) = (0 \text{ mm}, 150 \text{ ns}) \text{ Al I } 394.401$ $(H, \Delta t_{1-2}) = (0 \text{ mm}, 150 \text{ ns}) \text{ Al I } 396.152$ $\Delta t_{1-2} = 250 \ ns \ -- (H, \Delta t_{1-2}) = (0 \text{ mm}, 150 \text{ ns}) \text{ N II } 391.900$ $(H, \Delta t_{1-2}) = (0 \text{ mm}, 150 \text{ ns}) \text{ N II } 399.500$ $\Delta t_{1-2} = 350 \ ns$ $(H, \Delta t_{1-2}) = (0 \text{ mm}, 250 \text{ ns}) \text{ N II } 399.500$ $(H, \Delta t_{1-2}) = (0 \text{ mm}, 350 \text{ ns}) \text{ N II } 399.500$ 20 $_{-2} = 150 \, ns$ 10^{24} $_{2} = 250 ns$ $\Delta t_{1-2} = 350 \, ns$ 15 Electron density (m⁻³) Energy (mJ) 1 pulse 10 10²³ H = 0 mmH 1 mm 5 = 1 2 3 5 4 6 200 400 600 800 0 Experiment number Time (ns) A. Favre, V. Morel, A. Bultel, G. Godard, S. Idlahcen, C. Grisolia Spectrochim. Acta Part B 175 (2021) 106011

GDR

EMILI

CNrs

Journées 2021 25-28 octobre 2021, Palaiseau

atelier

Plasma laser : diagnostic et modélisation

seconde partie

Plasmas en déséquilibre

- Situation de déséquilibre possible à la surface, dans l'échantillon, dans le plasma
- Déséquilibre de phase, de translation, d'excitation, d'ionisation, chimique, entre la matière et le rayonnement
- Nécessite des études spectroscopiques en émission, absorption, diffusion (Thomson), LIF, etc. résolues en temps et en espace
- Modélisation possible à condition... de disposer de bases de données pertinentes !

