Focusing an intense relativistic electron beam for flash radiography

A. Dudès ${ }^{1}$, C. Fourment ${ }^{1}$, F. Dorchies ${ }^{2}$
${ }^{1}$ CEA CESTA, 15 av des sablières, 33114 LE BARP
${ }^{2}$ CELIA, 351 cours Libération, 33400 TALENCE
mél : adrien.dudes@cea.fr

Flash radiography is an imaging technique used at CEA and aimed to study dense objects in fast hydrodynamic evolution. In order to produce the X -rays required by the technique, a high energy ($\sim 20 \mathrm{MeV}$) short duration (< 100ns) electron beam interacts with a high atomic number target foil [1]. The radiation are produced thanks to Bremsstrahlung effect in the foil. Focusing the electron beam on the target leads to a better resolution of the flash radiography image.

This work consists to study the focus of a relativistic electron beam ($3.3 \mathrm{MeV} ; 60 \mathrm{~ns} ; 1.9 \mathrm{kA}$) thanks to a preformed plasma. This work is the continuation of the thesis of Thomas Lahens who has studied the propagation of an electron beam in a cylindrical glass full of helium gas and plasma [2]. He has shown that helium gas ($10^{-1}-10^{-2} \mathrm{mbar}$) had an influence on the propagation of the electron beam comparing to vacuum ($\sim 10^{-6} \mathrm{mbar}$) due to the ionization of atoms by the beam.

Figure 1 : Experimental setup where the preformed plasma is generated

In order to study the beam propagation in a preformed plasma, a high enough ionization degree is required to overcome the ionization of neutrals by the beam. Here we report how to produce a pulsed, low density plasma with ionization rate reaching $\sim 1 \%$. A plasma at low pressure $\left(10^{-3}-\right.$ $10^{-4} \mathrm{mbar}$) is seeded by a high-voltage spark and further ionized by inductive heating in order to preionize the gas before the propagation of the beam.

Références

[1] N. Pichoff, "Les nouvelles limites de la radiographie éclair." Clefs CEA n154, pp. 59-66.
[2] T. Lahens,Propagation d'un faisceau d'électrons relativistes intense de radiographieéclair dans un plasma froid. PhD thesis, Université de Bordeaux, 2019

